Math, asked by pratikvj, 11 months ago

please solve this for me

Attachments:

Answers

Answered by bhairab141
0

hence the prove.

hope you understand.

follow me.

Attachments:
Answered by Anonymous
1

 \frac{ {(a +  \frac{1}{b} )}^{m} \times  {(a -  \frac{1}{b} )}^{n} }{ {(b +  \frac{1}{a} )}^{m} \times  {(b -  \frac{1}{a} )}^{n}  }  =   {( \frac{a}{b} )}^{m + n}  \\  \\  \frac{ {( \frac{ab + 1}{b} )}^{m}  \times  {( \frac{ab - 1}{b} )}^{n} }{ {( \frac{ab + 1}{a} )}^{m}  \times  {( \frac{ab - 1}{a} )}^{n} }  =  {( \frac{a}{b} )}^{m  + n}  \\  \\  \frac{ \frac{ {(ab + 1)}^{m} }{ {b}^{m} }  \times  \frac{ {(ab - 1)}^{n} }{ {b}^{n} } }{ \frac{ {(ab + 1)}^{m} }{ {(a)}^{m} }  \times  \frac{ {(ab - 1)}^{m} }{ {a}^{n} } }  =  {( \frac{a}{b} )}^{m + n}  \\  \\  \frac{ \frac{ {(ab + 1)}^{m} \times  {(ab - 1)}^{n}  }{ {b}^{m} \times  {b}^{n}  } }{ \frac{ {(ab + 1)}^{m}  \times  {(ab - 1)}^{n} }{ {a}^{m}  \times  {a}^{n} } }   =  {( \frac{a}{b} )}^{m + n}  \\  \\  \frac{ {(ab + 1)}^{m}  \times  {(ab - 1)}^{n} }{ {b}^{m + n} }  \times  \frac{ {a}^{m + n} }{ {(ab + 1)}^{m} \times  {(ab - 1)}^{n}  }  =  {( \frac{a}{b} )}^{m + n}  \\  \\  \frac{ {a}^{m + n} }{ {b}^{m + n} }  =  {( \frac{a}{b} )}^{m + n}  \\  \\  {( \frac{a}{b} )}^{m + n}  =  {( \frac{a}{b} )}^{m + n}

L.H.S = R.H.S

Hence , Proved.

Similar questions