PLEASE SOLVE THIS FRIENDS I BEG U
Answers
Given:
- A line segment joining the point (-3,10) and (6,-8)
- A point (-1,6) divides the line segment in a certain ratio
To find:
- Ratio in which the given point will divide the line segment
Formula required:
- Section formula
[ Where point is dividing the line segment joining the points and in the ratio m : n ]
Solution:
On comparison we will get,
Now,
Let the given point divide the line segment in the ratio m : n
so, Let us assume that
then,
Using section formula
From here we will get,
Hence,
- m : n = 2 : 7
And therefore,
- Given point will divide the given line segment in the ratio 2 : 7.
Given:
A line segment joining the point (-3,10) and (6,-8)
A point (-1,6) divides the line segment in a certain ratio
To find:
Ratio in which the given point will divide the line segment
Formula required:
Section formula
\purple{\bigstar}\;\;\;\boxed{\sf{(x,\;y)=\bigg(\dfrac{mx_2+nx_1}{m+n}\;,\;\dfrac{my_2+ny_1}{m+n}\bigg)}}★
(x,y)=(
m+n
mx
2
+nx
1
,
m+n
my
2
+ny
1
)
[ Where point \sf{(x,\;y)}(x,y) is dividing the line segment joining the points \sf{(x_1,\;y_1)}(x
1
,y
1
) and \sf{(x_2,\;y_2)}(x
2
,y
2
) in the ratio m : n ]
Solution:
On comparison we will get,
\sf{x_1=-3,\;y_1=10}x
1
=−3,y
1
=10
\sf{x_2=6,\;y_2=-8}x
2
=6,y
2
=−8
\sf{x=-1,\;y=6}x=−1,y=6
Now,
Let the given point divide the line segment in the ratio m : n
so, Let us assume that
\sf{\dfrac{m}{n}=\dfrac{k}{1}}
n
m
=
1
k
then,
Using section formula
\implies\sf{(x,\;y)=\bigg(\dfrac{mx_2+nx_1}{m+n}\;,\;\dfrac{my_2+ny_1}{m+n}\bigg)}⟹(x,y)=(
m+n
mx
2
+nx
1
,
m+n
my
2
+ny
1
)
\implies\sf{(-1,\;6)=\bigg(\dfrac{(k)(6)+(1)(-3)}{k+1}\;,\;\dfrac{(k)(-8)+(1)(10)}{k+1}\bigg)}⟹(−1,6)=(
k+1
(k)(6)+(1)(−3)
,
k+1
(k)(−8)+(1)(10)
)
\implies\sf{-1=\dfrac{(k)(6)+(1)(-3)}{k+1}\;,\;6=\dfrac{(k)(-8)+(1)(10)}{k+1}}⟹−1=
k+1
(k)(6)+(1)(−3)
,6=
k+1
(k)(−8)+(1)(10)
\implies\sf{-k-1=6k-3\;\;,\;\;6k+6=-8k+10}⟹−k−1=6k−3,6k+6=−8k+10
\implies\sf{7k=2\;\;,\;\;14k=4}⟹7k=2,14k=4
From here we will get,
\implies\boxed{\sf{k=\dfrac{2}{7}=\dfrac{m}{n}}}⟹
k=
7
2
=
n
m
Hence,
m : n = 2 : 7
And therefore,
Given point will divide the given line segment in the ratio 2 : 7.
Hope it helps you
plz mark it as brainliest..........