Math, asked by Anchalsinghrajput, 1 year ago

please solve this guy's immediately....

Attachments:

Answers

Answered by DaIncredible
13
Heya there !!!
Here is the answer you were looking for:

Identity used :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

x =  \sqrt{3}  +  \sqrt{2}  \\  \\  \frac{1}{x}  =  \frac{1}{ \sqrt{3} +  \sqrt{2}  }

On rationalizing the denominator we get,

 \frac{1}{x}  =  \frac{1}{ \sqrt{3}  +  \sqrt{2} }  \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  \\  \\  \frac{1}{x}  =  \frac{ \sqrt{3}  -  \sqrt{2} }{ {( \sqrt{3}) }^{2}  -  {( \sqrt{2} )}^{2} }  \\  \\  \frac{1}{x}  =  \frac{ \sqrt{3} -  \sqrt{2}  }{3 - 2}  \\  \\  \frac{1}{x}  =  \sqrt{3}  -  \sqrt{2}  \\  \\ x +  \frac{1}{x}  = ( \sqrt{3}  +  \sqrt{2} ) + ( \sqrt{3}  -  \sqrt{2} ) \\  \\ x +  \frac{1}{x}  =  \sqrt{3}  +  \sqrt{2}  +  \sqrt{3}  -  \sqrt{2}  \\  \\ x +  \frac{1}{x}  = 2 \sqrt{3}

1. On squaring both the sides (x) + (1/x) = (2√3)

 {(x +  \frac{1}{x} )}^{2}  =  {(2 \sqrt{3} )}^{2}  \\  \\  {(x)}^{2}  +  {( \frac{1}{x} )}^{2}  + 2 \times x \times  \frac{1}{x}  = 12 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 12 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 12 - 2 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 10 \\

2. On cubing both the sides of (x) + (1/x) = (2√3)

 {(x +  \frac{1}{x}) }^{3}  =  {(2 \sqrt{3} )}^{2}  \\  \\  {(x)}^{3}  +  {( \frac{1}{x} )}^{3}  + 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x} ) = 24 \sqrt{3}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3(2 \sqrt{3} ) = 24 \sqrt{3}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 6 \sqrt{3}  = 24 \sqrt{3}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 24 \sqrt{3}  - 6 \sqrt{3}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 18 \sqrt{3}

3. On squaring both the sides of (x)^2 + (1/x)^2 = 10

 {( {x}^{2}  +  \frac{1}{ {x}^{2} } )}^{2}  =  {(10)}^{2}  \\  \\  {( {x}^{2} )}^{2}  +  {( \frac{1}{ {x}^{2} } )}^{2}  + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }  = 100 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 100 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 100 - 2 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 98

Hope you understood !!!

If you have any doubt regarding to my answer, please ask in the comment section or inbox me ^_^

@Mahak24

Thanks...
☺☺

Anchalsinghrajput: thanks you
DaIncredible: my pleasure... Glad you liked it
Anchalsinghrajput: ya
DaIncredible: thanks for brainliest
Answered by Anonymous
5
Hey sistah!!!

Here's your answer =>=>

Refer to the attached file ^^^^

Sorry if you feel some difficulty in understanding the solution, but plz ask me. I'll try to explain you.

Hope it will help you ☆▪☆

Thanks ^_^
Attachments:
Similar questions