Math, asked by pabodhawanniarachchi, 2 months ago

Please solve this i will mark u as brainlist​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

y =   \ln( \tan(x) )

Differentiating both sides w.r.t. x, we get,

 \implies \: \frac{dy}{dx} =    \frac{ \sec^{2} (x) }{ \tan(x) }  \\

 \implies \: \frac{dy}{dx} =    \frac{ \cos(x) }{  \cos^{2}(x) \sin(x) }  \\

 \implies \: \frac{dy}{dx} =    \frac{ 1 }{  \cos(x) \sin(x) }  \\

 \implies \: \frac{dy}{dx} =    \frac{ 2 }{  2\sin(x) \cos(x) }  \\

 \implies \: \frac{dy}{dx} =    \frac{ 2 }{ \sin(2x) }  \\

 \implies \: \frac{dy}{dx} =    2  \cosec(2x)  \\

Again, differentiating w.r.t x ,

 \implies \: \frac{d^{2} y}{dx^{2} } =   -   4  \cosec(2x)  \cot(2x)  \\

 \implies \: \frac{d^{2} y}{dx^{2} } =   -    \frac{2}{ \sin(2x) }   .2  \cot(2x)  \\

 \implies \:  \sin(2x) \frac{d^{2} y}{dx^{2} } =   -     4  \cot(2x)  \\

Similar questions