Math, asked by mae15, 1 year ago

Please solve this. Maths lover I need your help!

Attachments:

Answers

Answered by Grimmjow
4

\sf{Given :\;\dfrac{Tan\theta}{1 - Cot\theta} + \dfrac{Cot\theta}{1 - Tan\theta}}\\\\\\\boxed{\sf{We\;know\;that : Cot\theta = \dfrac{1}{Tan\theta}}}\\\\\\\implies \dfrac{Tan\theta}{1 - \dfrac{1}{Tan\theta}} + \dfrac{\dfrac{1}{Tan\theta}}{1 - Tan\theta}\\\\\\\implies \dfrac{Tan\theta}{\dfrac{Tan\theta - 1}{Tan\theta}} + \dfrac{1}{Tan\theta(1 - Tan\theta)}\\\\\\\implies \dfrac{Tan^2\theta}{(Tan\theta - 1)} - \dfrac{1}{Tan\theta(Tan\theta - 1)}

\sf{\implies \dfrac{1}{(Tan\theta - 1)}\times (Tan^2\theta - \dfrac{1}{Tan\theta}})}\\\\\\\sf{\implies \dfrac{1}{(Tan\theta - 1)}\times (\dfrac{Tan^3\theta - 1}{Tan\theta})


\boxed{\sf{We\;know\;that : a^3 - b^3 = (a - b)(a^2 + ab + b^2)}}\\\\\\\sf{\implies \dfrac{1}{(Tan\theta - 1)}\times [\dfrac{(Tan\theta - 1)(Tan^2\theta + Tan\theta + 1)}{Tan\theta}]

\sf{\implies \dfrac{Tan^2\theta + Tan\theta + 1}{Tan\theta}

\sf{\implies 1 + Tan\theta + \dfrac{1}{Tan\theta}}\\\\\\\sf{\implies 1 + \dfrac{Tan^2\theta + 1}{Tan\theta}

\boxed{\sf{We\;know\;that : 1 + Tan^2\theta = Sec^2\theta}}

\sf{\implies 1 + \dfrac{Sec^2\theta}{Tan\theta}}\\\\\\\sf{\implies 1 + \dfrac{Sec^2\theta.Cos\theta}{Sin\theta}

\boxed{\sf{We\;know\;that : Sec\theta.Cos\theta = 1}}

\sf{\implies 1 + \dfrac{Sec\theta}{Sin\theta}

\boxed{\sf{We\;know\;that : \dfrac{1}{Sin\theta} = Cosec\theta}}}

\sf{\implies 1 + Sec\theta.Cosec\theta}


mae15: thanks a lot
mae15: My question must have wasted your time
Grimmjow: ^_^ It's Okay!
Grimmjow: I didn't Waste it. .B'Coz it Helped you!^^
mae15: yeah
Similar questions