Prove that a2 + b2 + c2 - ab - ac - bc is always non-negative for all the values of a, b and c.
Answers
Answer:
a² + b² + c² - ab - ac - bc is non-negative
Step-by-step explanation:
Prove that a2 + b2 + c2 - ab - ac - bc is always non-negative for all the values of a, b and c.
a² + b² + c² - ab - ac - bc
Multiply & divide by 2
= (1/2) (2a² + 2b² + 2c² - 2ab - 2ac - 2bc)
= (1/2)( a² + a² + b² + b² + c² + c² - 2ab - 2ac - 2bc)
= (1/2)( a² + b²- 2ab + a² + c² - 2ac + b² + c² - 2bc)
=(1/2) ( (a -b)² + (a -c)² + (b-c)² )
Square of any number number is non - negative
=> (a -b)² , (a -c)² & (b-c)² are non - negatives
sum of non - negatives is non - negative
=> (a -b)² + (a -c)² + (b-c)² is non negative
non - negative divided by any non-negative number is also non- negative
=> (1/2) ( (a -b)² + (a -c)² + (b-c)² ) is non - negative
=> a² + b² + c² - ab - ac - bc is non-negative