Math, asked by superxtreme2, 1 year ago

Please solve this neatly!

Attachments:

Answers

Answered by TooFree
17

a + b + c = 5 (Given)

ab + bc + ca = 10 (Given)


Find (a² + b² + c²):

(a + b + c)² = a² + b² + c² +2(ab + bc + ca)

Sub a + b + c = 5 and ab + bc + ca = 10:

(5)² = a² + b² + c² +2(10)

a² + b² + c² = (5)² -2(10)

a² + b² + c² = 25 -20

a² + b² + c² = 5


Find (a³ + b³ + c³ - 3abc) :

a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c²- ab - bc - ca)

Sub a + b + c = 5, ab + bc + ca = 10 and a² + b² + c² = 5:

a³ + b³ + c³ - 3abc = (5)(5 - 10)

a³ + b³ + c³ - 3abc = (5)(-5)

a³ + b³ + c³ - 3abc = - 25 (Proven)




superxtreme2: thank you so much sir
TooFree: You are welcome :)
superxtreme2: :)
TooFree: Thank you for the brainliest :)
Noah11: well elaborated answer sir/mam! :)
Answered by Muskan1101
17
Here's your answer !!

_________________________________

It's given that,

 = > a + b + c = 5

 = > ab + bc + ca = 10

We know that,

 = > {(a + b + c)}^{2} = {a}^{2} + {b}^{2} + {c}^{2} \\ \: \: \: \: \: \: \: \: + 2(ab + bc + ca)

By substituting the value of (a+c+b) and (ab+bc+ca) ,we get :-

 = > {(5)}^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2(10)

 = > 25 - 2(10) = {a}^{2} + {b}^{2} + {c}^{2}

 = > 25 - 20 = {a}^{2} + {b}^{2} + {c}^{2}


Therefore,

 = > {a}^{2} + {b}^{2} + {c}^{2} = 5

Now,

We know that,

 = > {a}^{3} + {b}^{3} + {c}^{3} - 3abc= (a + b + c)( {a}^{2} + {b}^{2} \\ + {c}^{2} - ab - bc - ca )

 = > {a}^{3} + {b}^{3} + {c}^{2} - 3abc = (a + b + c )( {a}^{2} + {b}^{2} \\ + {c}^{2} - (ab + bc + ca)

By substituting value of (a+B+C),(ab+bc+ca)and (a^2+b^2+c^2), we get :-

 = > {a}^{3} + {b}^{3 } + {c}^{3} - 3abc =

 = (5)(5 - 10) \\ = 5 \times( - 5) \\ = - 25


________________________________

Hope it helps you !! :)

superxtreme2: great efforts dear :)
Muskan1101: Thanks :)
superxtreme2: :)
Noah11: great answer :)
Muskan1101: Thankyou ! :)
Muskan1101: :)Thanks (:
Similar questions