English, asked by Abdulrazak182, 10 months ago

please solve this please ​

Attachments:

Answers

Answered by BendingReality
12

Answer:

\displaystyle \sf \longrightarrow \frac{dy}{dx}=\frac{2xy^2}{y^2+1} \\

Explanation:

Given :

\displaystyle \sf y=x^2+                                       \cfrac{1}{ x^2+                                                 \cfrac{1}{x^2+                                                            \cfrac{1}{ x^2+                                                                       \cfrac{1}{x^2+.... \infty}}}}} \\ \\

Clearly we can see all vales are same as in denominator if we let y :

\displaystyle \sf y=x^2+\frac{1}{y} \\ \\

\displaystyle \sf \longrightarrow y-\frac{1}{y}=x^2 \\ \\

\displaystyle \sf \longrightarrow y-y^{-1}=x^2 \\ \\

Now diff. w.r.t. x :

\displaystyle \sf \longrightarrow \frac{dy}{dx} -\left(-\frac{1}{y^2}.\frac{dy}{dx}\right)=\frac{d}{dx} (x^2) \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dx} +\left(\frac{1}{y^2}.\frac{dy}{dx}\right)=2x \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dx}\left(1+\frac{1}{y^2}\right)=2x \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dx}\left(\frac{y^2+1}{y^2}\right)=2x \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dx}=\frac{2xy^2}{y^2+1} \\ \\

Hence we get required answer.

Similar questions