Math, asked by jhonCenabrock, 5 months ago

Please Solve This


Please
 \frac{y - 1}{3}  \:  -  \:  \frac{y - 2}{4}  \:  =  \: 1

Answers

Answered by thebrainlykapil
148

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

 \frac{y - 1}{3} \: - \: \frac{y - 2}{4} \: = \: 1 \\

 \\  \\

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\:  \frac{y - 1}{3} \: - \: \frac{y - 2}{4} \: = \: 1  }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

LCM of denominator 3 and 4 on L.H.S is 12

\qquad \quad {:} \longrightarrow \sf{\sf{  \frac{y - 1}{3} \: - \: \frac{y - 2}{4} \: = \: 1  }} \\ \\

Multiplying both sides by 12 , we get

\qquad \quad {:} \longrightarrow \sf{\sf{12 \times   \bigg( \dfrac{y - 1}{3} \bigg) \: - \:12 \times \bigg(\dfrac{y - 2}{4} \bigg) \:  =   \: 12 \:  \times  \: 1}} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ \cancel{12} \times   \dfrac{y - 1}{ \cancel{3}}  \: - \: \cancel{12} \times \dfrac{y - 2}{ \cancel{4}}\:  =   \: 12 \:  \times  \: 1}} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{  4(y - 1) \:  - 3(y - 2) \:  =  \: 12  }} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{  4y  \: -  \: 4 \:  - 3y \:  +   \: 6\:  =  \: 12  }} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{  4y  \: -  \: 3y \:  - \: 4 \:  +   \: 6\:  =  \: 12  }} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{  \: y \:  +   \: 2\:  =  \: 12  }} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{  \: y \:   =  \: 12 \:  -  \: 2  }} \\ \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{y\: = \: 10   }}}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Verification:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\:  \frac{y - 1}{3} \: - \: \frac{y - 2}{4} \: = \: 1  }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{10- 1}{3} \: - \: \frac{10 - 2}{4} \: = \: 1  }} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{9}{3} \: - \: \frac{8}{4} \: = \: 1  }} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{9 \times 4}{3 \times 4} \: - \: \frac{8 \times 3}{4 \times 3} \: = \: 1  }} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{  \frac{36 \:  -  \: 24}{12}  = \: 1  }} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{  \frac{12}{12}  = \: 1  }} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{  \cancel{\frac{12}{12} } = \: 1  }} \\ \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{1\: = \: 1  }}}\\ \\

 \\  \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf \therefore \; y \; = 10

━━━━━━━━━━━━━━━━━━━━━━━━━

 \\  \\

More For Knowledge :-

\underbrace\red{\boxed{ \sf \green{ Rules \: to \:Solve \: a \: Linear \: Equation \: in \: 1 \: Variable}}}

  • Rule 1 :- Same quantity ( number ) can be added to both side of an equation without changing the equality.
  • Rule 2 :- Same quantity can be subtracted from both sides of an equation without changing the quality
  • Rule 3 :- Both sides of an equation may be multiplied by the same non zero number without changing the quality.
  • Rule 4 :- Both sides of an equation may be divided by the same non zero number without changing the quality.

 \\  \\

Note :-

It should be noted that some complicated equation can be solved by using two or more of these rules together.

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by 360Degree
1

Given :

  • \rm{\dfrac{y - 1}{3} \: - \: \dfrac{y - 2}{4} \: = \: 1}

To find :

  • The value of y

Solution :

 \  \sf{\dfrac{y - 1}{3} \: - \: \dfrac{y - 2}{4} \: = \: 1}

Taking out the LCM

 {:} \implies \sf{ \dfrac{4y - 4 - 3y + 6 }{12}  = 1}

 {:} \implies \sf{ \dfrac{y  +  2 }{12}  = 1}

By applying cross multiplication rule

 {:} \implies \sf{y  +  2   = 12}

By bringing 2 to RHS

 {:} \implies \sf{y     = 12 - 2}

 {:} \implies \boxed{ \frak \pink{y     = 10}}

Verification :

By putting the value of y in equation

  {:}\implies \  \sf{\dfrac{10 - 1}{3} \: - \: \dfrac{10 - 2}{4} \: = \: 1}

  {:}\implies \  \sf{\dfrac{9}{3} \: - \: \dfrac{8}{4} \: = \: 1}

  {:}\implies \  \sf{ \dfrac{36 - 24}{12} \: = \: 1}

  {:}\implies \  \sf{ \dfrac{ \cancel{12}}{ \cancel{12}} \: = \: 1}

  {:}\implies \  \sf{ 1 = 1}

LHS = RHS

Hence Verified!!

Similar questions