Math, asked by good2168, 1 year ago

please solve this problem​

Attachments:

Answers

Answered by ItsTogepi
14

\huge\mathfrak\red{Solution}

 \frac{a}{ax + 1}  +  \frac{b}{bx - 1}  = a + b \\  = >  ( \frac{a}{ax - 1}  - b) + ( \frac{b}{bx - a} ) = 0 \\  =  >  \frac{a - abx + b}{ax - 1}  +  \frac{b - abx + a}{bx - 1}  = 0 \\  =  > (a + b - abx)( \frac{1}{ax - 1}  +  \frac{1}{bx - 1}  = 0 \\  =  > (a + b - abx)( \frac{bx - 1 + ax - 1}{(ax - 1)(bx - 1)}  = 0 \\  =  > (a + b - abx)(ax + bx - 2) = 0 \\  either \\ a + b - abx = 0 \\  =  >  a+ b = abx \\  =  > x =  \frac{a + b}{ab}  \\  \\ or \\  ax + bx - 2 = 0 \\  =  > x(a + b) = 2 \\  =  > x =  \frac{2}{a +b }

The required value of x is

a+b/ab and 2/a+b

Hope it helps you✌✌

Similar questions