Physics, asked by dityashahni, 1 year ago

please solve this problem.

Attachments:

kirtiprasanjenpchfhd: how can I answer now??
dityashahni: It's ok
dityashahni: have u solve
kirtiprasanjenpchfhd: yaa...
kirtiprasanjenpchfhd: a is the answer..
dityashahni: ok if anyone of the answer is not well then u edit and answer.
dityashahni: otherwise there is no option
dityashahni: and ur answer is right
dityashahni: wait one more!

Answers

Answered by sumitsainisingpdetub
1
refer to the attachment
Attachments:

sumitsainisingpdetub: please mark my answer as brainilist
sumitsainisingpdetub: thanks
sumitsainisingpdetub: how r u
Answered by rakeshmohata
1
Hope u like my process
=====================
We know,

 = > \bf \: horizontal \: \: range = \frac{ {u}^{2} \sin(2 \theta ) }{g} \\ \\ = > \bf \: greatest \: \: height \: = \frac{ {(u \sin( \theta ) )}^{2} }{2g} \\ \\

Given,
=-=-=-=
=> Horizontal range = 2 × greatest height.

So,

 = > \it \frac{ {u}^{2} \sin(2 \theta ) }{g} = 2 \times \frac{ {u}^{2} \sin {}^{2} ( \theta ) }{2g} \\ \\ = > \it \: \frac{ {u}^{2} \times 2 \sin( \theta ) \cos( \theta ) }{g} = \frac{ {u}^{2} \times 2 \sin {}^{2} ( \theta ) }{2g} \\ \\ = > \bf \: \sin(2 \theta ) = { \sin }^{2} ( \theta )......(1)\\ \\ = > \cos( \theta ) = \frac{ \sin( \theta ) }{2} \\ \\ = > \sqrt{1 - { \sin}^{2}( \theta) } = \frac{ \sin( \theta ) }{2} \\ \\ = > 1 - \sin {}^{2} ( \theta ) = \frac{1}{4} \sin {}^{2} ( \theta ) \\ \\ = > \frac{5}{4} \sin {}^{2} ( \theta ) = 1 \\ \\ = > \sin( \theta ) = \sqrt{ \frac{4}{5} } = \bf \underline{ \frac{2}{ \sqrt{5} } }

Hence the range of the projectile

 = > \bf \: \frac{ {v}^{2} \sin(2 \theta ) }{g} \\ \\ = \it \frac{ {v}^{2} \sin {}^{2} ( \theta ) }{g}...... (by \:\: 1)\\ \\ = \frac{ {v}^{2} \times {( \frac{2}{ \sqrt{5} } )}^{2} }{g} \\ \\ = > \bf \underline{ \frac{4 {v}^{2} }{5g} }......( \it \: answer)

Hence option a (✔️) is the correct answer.
__________________________
Hope this is ur required answer

❤️Proud to help you ❤️

dityashahni: sorry
dityashahni: but ur answer is also best.
rakeshmohata: it's ok!!.. proud to help u!!
rakeshmohata: and thanks for the complement!!
dityashahni: always
Similar questions