Math, asked by priyanshi6031, 1 year ago

please solve this problem

Attachments:

Answers

Answered by fsoniasingha
1
HOLA USER
HERE'S YOUR ANSWER

given = \cos \alpha  = \sin \alpha  \\ i.e \: \cos45 = \sin45 = \frac{1}{2} \\ i.e \ \: alpha = 45 \\ \\ now \: (a) \: 2 {tan}^{2} <br />\alpha + {cos}^{2} \alpha - 1 \\ 2 ({1})^{2} + \frac{1}{ \sqrt{2} } - 1 \\ 2 + \frac{1}{2} - 1 \\ 1 + \frac{1}{2} \\ \frac{3}{2} \\ \\ (b)2 {cos}^{2} \alpha - 1 \\ 2( \frac{1}{ \sqrt{2} } ) - 1 \\ \frac{2}{2} - 1 \\ 1 - 1 \\ 0
HOPE IT HELPS YOU
PLZZ MARK AS BRAINLIEST IF IT HELPS☺☺☺☺
Answered by Brainlyconquerer
2

Step-by-step explanation:

We are given that ,

\implies{\mathsf{ Cos(\theta) = Sin(\theta) }}

Then it is clear that both sin and cos will be equal at 45° or Π/4 rad.

That is

\implies{\mathsf{ Cos(\theta) = Sin(\theta) = 45^{\circ{}} = \frac{1}{\sqrt{2}} }}

1]

Reduce the function —:

\implies{\mathsf{ 2tan^{2}(\theta) + Cos^{2}(\theta) - 1 }}

\implies{\mathsf{ 2 \times ( \frac{ { \sin(\theta) }^{2} }{ { \cos(\theta) }^{2} } ) +  { \cos(\theta) }^{2}  - 1}} \\  \\  \implies{\mathsf{2 \times (  \frac{ { (\frac{1}{ \sqrt{2} } )}^{2} }{ { (\frac{1}{ \sqrt{2} } )}^{2} })  +  { (\frac{1}{ \sqrt{2} }) }^{2}  - 1 }} \\  \\ \implies{\mathsf{ 2( \frac{ \frac{1}{2} }{ \frac{1}{2} })  +  \frac{1}{2}  - 1 }} \\  \\ \implies{\mathsf{ \frac{1}{2}  + 1 }}  \\  \\ \implies{\mathsf{  \frac{3}{2}}}

2]

\implies{\mathsf{ 2Cos^{2}(\theta) - 1 }}

 \implies{\mathsf{2 \times ( { \frac{1}{ \sqrt{2} } )}^{2}  - 1 }} \\  \\ \implies{\mathsf{2 \times ( \frac{1}{2} ) - 1 }} \\  \\  \implies{\mathsf{1 - 1 }}\\  \\ \implies{\mathsf{= 0}}

Similar questions