please solve this ques
Attachments:
![](https://hi-static.z-dn.net/files/d7c/75070fcec834dc944328b9c7e3c82cab.jpg)
sowmiya35:
help me plz
Answers
Answered by
5
Required area= Area of circle-ar(ABC)-ar(OBD)-area of sector COD.
As CB is the diameter, therefore angle CAB=90°(as angle in semicircle is a right angle).
Therefore in triangle ABC,
![{ab}^{2} + {ac}^{2} = {bc}^{2} {ab}^{2} + {ac}^{2} = {bc}^{2}](https://tex.z-dn.net/?f=+%7Bab%7D%5E%7B2%7D+%2B+%7Bac%7D%5E%7B2%7D+%3D+%7Bbc%7D%5E%7B2%7D+)
![{24}^{2} + {7}^{2} = {bc}^{2} \\ 625 = {bc}^{2} \\ bc = 25 {24}^{2} + {7}^{2} = {bc}^{2} \\ 625 = {bc}^{2} \\ bc = 25](https://tex.z-dn.net/?f=+%7B24%7D%5E%7B2%7D+%2B+%7B7%7D%5E%7B2%7D+%3D+%7Bbc%7D%5E%7B2%7D+%5C%5C+625+%3D+%7Bbc%7D%5E%7B2%7D+%5C%5C+bc+%3D+25)
Therefore radius of the circle=25/2cm.
Area of triangle ABC=
![\frac{1}{2} \times 7 \times 24 = 84 \frac{1}{2} \times 7 \times 24 = 84](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B2%7D+%5Ctimes+7+%5Ctimes+24+%3D+84)
Area of triangle OBD=
![\frac{1}{2} \times r^{2} \times \sin(60) = \frac{1}{2} \times \frac{625}{4} \times \frac{ \sqrt{3} }{2} \frac{1}{2} \times r^{2} \times \sin(60) = \frac{1}{2} \times \frac{625}{4} \times \frac{ \sqrt{3} }{2}](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B2%7D+%5Ctimes+r%5E%7B2%7D+%5Ctimes+%5Csin%2860%29+%3D+%5Cfrac%7B1%7D%7B2%7D+%5Ctimes+%5Cfrac%7B625%7D%7B4%7D+%5Ctimes+%5Cfrac%7B+%5Csqrt%7B3%7D+%7D%7B2%7D+)
(Here angle is in degrees)
Area of sector OCD=
![\frac{120}{360} \times \pi {r}^{2} = \frac{1}{3} \times \frac{625\pi}{4} \frac{120}{360} \times \pi {r}^{2} = \frac{1}{3} \times \frac{625\pi}{4}](https://tex.z-dn.net/?f=+%5Cfrac%7B120%7D%7B360%7D+%5Ctimes+%5Cpi+%7Br%7D%5E%7B2%7D+%3D+%5Cfrac%7B1%7D%7B3%7D+%5Ctimes+%5Cfrac%7B625%5Cpi%7D%7B4%7D+)
Area of circle=
![\pi {r}^{2} = \frac{625\pi}{4} \pi {r}^{2} = \frac{625\pi}{4}](https://tex.z-dn.net/?f=%5Cpi+%7Br%7D%5E%7B2%7D+%3D+%5Cfrac%7B625%5Cpi%7D%7B4%7D+)
Required area=
![\frac{625\pi}{4} - 84 - \frac{625 \sqrt{3} }{16} - \frac{625\pi}{12} \frac{625\pi}{4} - 84 - \frac{625 \sqrt{3} }{16} - \frac{625\pi}{12}](https://tex.z-dn.net/?f=+%5Cfrac%7B625%5Cpi%7D%7B4%7D+-+84+-+%5Cfrac%7B625+%5Csqrt%7B3%7D+%7D%7B16%7D+-+%5Cfrac%7B625%5Cpi%7D%7B12%7D+)
which is approximately equal to
As CB is the diameter, therefore angle CAB=90°(as angle in semicircle is a right angle).
Therefore in triangle ABC,
Therefore radius of the circle=25/2cm.
Area of triangle ABC=
Area of triangle OBD=
(Here angle is in degrees)
Area of sector OCD=
Area of circle=
Required area=
which is approximately equal to
Similar questions