please solve this question
Answers
Question :-
If the zeroes of the quadratic polynomial x² + (a + 1)x + b are 2 and - 3 then find a and b.
Solution :-
Let f( x ) = x² + (a + 1)x + b
We know that the zeroes of the polynomial is the value the x of which polynomial becomes 0
Given :-
Zeroes of the given polynomial are 2 and - 3.
So, f( 2 ) = 0 and f( - 3 ) = 0
i ) f( 2 ) = 0
⇒ 2² + (a + 1)2 + b = 0
⇒ 4 + 2a + 2 + b = 0
⇒ 6 + 2a + b = 0
⇒ 2a + b = - 6 → eq(1)
ii ) f( - 3 ) = 0
⇒ ( - 3 )² + (a + 1)( -3 ) + b = 0
⇒ 9 - 3a - 3 + b = 0
⇒ - 3a + b + 6 = 0
⇒ 3a - b - 6 = 0
⇒ 3a - b = 6 → eq(1)
Adding eq(1) and eq(2)
⇒ 2a + b + (3a - b) = - 6 + 6
⇒ 2a + b + 3a - b = 0
⇒ 5a = 0
⇒ a = 0/5
⇒ a = 0
Substituting a = 0 in eq( 1 )
⇒ 2a + b = - 6
⇒ 2(0) + b = - 6
⇒ 0 + b = - 6
⇒ b = - 6
Hence, the value of a is 0 and the value of b is - 6.
Answer:
Value of a = 0
Value of b = -6
Step-by-step explanation:
Let f ( x ) = x² + ( a + 1 ) x + b
2 and - 3 are tge zeros of polynomials.
- (1) f ( 2 ) = 0
- (2) f ( - 3 = 0
(1) f ( 2 ) = 0
= 2² + ( a + 1 ) 2 + b = 0
= 4 + 2a + 2 + b = 0
= 6 + 2a + b = 0
= 2a + b = - 6 _[Equation]_(1)_
(2) f ( -3 ) = 0
= ( - 3 )² + ( a + 1 ) / ( - 3 ) + b = 0
= 9 - 3a - 3 + b = 0
= - 3a + b + 6 = 0
= 3a - b - 6 = 0
= 3a - b = 6 _[Equation]_(2)_
Adding: [Equation] (1)_and_(2)
= 2a + b + ( 3a - b ) = - 6 + 6
= 2a + b + 3a - b = 0
= 5a = 0
= a = 0 / 5
= a = 0
Adding: (a = 0) in [Equation]_(1)_
= 2a + b = - 6
= 2 ( 0 ) + b = - 6
= 0 + b = - 6
= b = - 6
Therefore , value of a = 0 and value of b = -6