Math, asked by prateek69252, 10 months ago

Please solve this question​

Attachments:

Answers

Answered by Sudhir1188
9

ANSWER:

  • Value of the expression:
  •  \dfrac{1}{a} (x + a)(ax + 1)

GIVEN:

x {}^{2}  +  \dfrac{a {}^{2} + 1 }{a} x + 1

TO FIND:

  • Factorisation of above expression.

SOLUTION:

 = x {}^{2}  +  \dfrac{a {}^{2} + 1 }{a} x + 1 \\  \\  =  \frac{ax {}^{2}  + (a {}^{2} + 1)x + a }{a}  \\  \\  =  \frac{ax {}^{2} + a {}^{2}x + x + a  }{a}  \\  \\  =  \frac{(ax {}^{2} + a {}^{2} x) + (x +a) }{a}  \\  \\  =  \frac{ax(x + a) + 1(x + a)}{a}  \\  \\  =  \frac{(x + a)(ax + 1)}{a}  \\  \\  =  \frac{1}{a} (x + a)(ax + 1)

The value of above expression:

 \dfrac{1}{a} (x + a)(ax + 1)

NOTE:

some important formulas:

  • (a+b)² = ++2ab
  • (a-b)² = a²+b²-2ab
  • (a+b)³ = +b³+3ab(a+b)
  • (a+b)³ = a³--3ab(a-b)

Similar questions