Math, asked by fifaabhi01, 9 months ago

Please Solve this question​

Attachments:

Answers

Answered by DrNykterstein
0

  =  =  >  \:  \:  \frac{1}{1 +  \sqrt{2} }  +  \frac{1}{ \sqrt{2}  +  \sqrt{3} }  +  \frac{1}{ \sqrt{3}  +  \sqrt{4} }  +  \frac{1}{ \sqrt{4}  +  \sqrt{5} }  +   \frac{1}{ \sqrt{5} +  \sqrt{6}  }  +  \frac{1}{ \sqrt{6}  +  \sqrt{7} }  +  \frac{1}{ \sqrt{7} +  \sqrt{8}  }  +  \frac{1}{ \sqrt{8} +  \sqrt{9}  }  \\  \\  =  =  >  \:  \:  \frac{1}{1 +  \sqrt{2} }  \times  \frac{1 -  \sqrt{2} }{1 -  \sqrt{2} }  +  \frac{1}{  \sqrt{2}  +  \sqrt{3}  }  \times  \frac{ \sqrt{2}  -  \sqrt{3} }{ \sqrt{2} -  \sqrt{3}  }  +  \frac{1}{ \sqrt{3}   +  \sqrt{4} }  \times  \frac{ \sqrt{3}  -  \sqrt{4} }{ \sqrt{3} -  \sqrt{4}  }  +  \frac{1}{ \sqrt{4}  +   \sqrt{5}  }  \times  \frac{ \sqrt{4}  -  \sqrt{5} }{ \sqrt{4} -  \sqrt{5}  }  +  \frac{1}{ \sqrt{5}  +  \sqrt{6} }  \times  \frac{ \sqrt{5}  -  \sqrt{6} }{ \sqrt{5} -  \sqrt{6}  }  +  \frac{1}{ \sqrt{6} +  \sqrt{7}  }  \times  \frac{ \sqrt{6} -  \sqrt{7}  }{ \sqrt{6} -  \sqrt{7}  }  +  \frac{1}{ \sqrt{7}  +  \sqrt{8} }  \times  \frac{ \sqrt{7}  -  \sqrt{8} }{ \sqrt{7}  -  \sqrt{8} }  +  \frac{1}{ \sqrt{8}  +  \sqrt{9} } \times   \frac{ \sqrt{8} -  \sqrt{9}  }{ \sqrt{8}  -  \sqrt{9} }   \\  \\  =  =  >  \:  \:  \frac{1 -  \sqrt{2} }{  {1}^{2}   -  {( \sqrt{2} )}^{2} }  +  \frac{ \sqrt{2}  -  \sqrt{3} }{ {( \sqrt{2} )}^{2}  -  {( \sqrt{3} )}^{2} }  +  \frac{ \sqrt{3}  -  \sqrt{4} }{ {( \sqrt{3} )}^{2}  -  {( \sqrt{4}) }^{2} }  +  \frac{ \sqrt{4}  -  \sqrt{5} }{ {( \sqrt{4} )}^{2}  -  {( \sqrt{5} )}^{2} }  +  \frac{ \sqrt{5} -  \sqrt{6}  }{ {( \sqrt{5}) }^{2}  -  {( \sqrt{6} )}^{2} }  +  \frac{ \sqrt{6}  -  \sqrt{7} }{ {( \sqrt{6}) }^{2} -  {( \sqrt{7} )}^{2}  }  +  \frac{ \sqrt{7}  -  \sqrt{8} }{ {( \sqrt{7}) }^{2} -  {( \sqrt{8}) }^{2}  }  +  \frac{ \sqrt{8}  -  \sqrt{9} }{ {( \sqrt{8}) }^{2}  -  {( \sqrt{9} )}^{2} }  \\  \\  =  =  >  \:  \:   - \frac{1 -  \sqrt{2} }{1}   -   \frac{ \sqrt{2} -  \sqrt{3}  }{1}  -  \frac{ \sqrt{3} -  \sqrt{4}  }{1}  -  \frac{ \sqrt{4}  -  \sqrt{5} }{1}  -  \frac{ \sqrt{5} -  \sqrt{6}  }{1}   -  \frac{ \sqrt{6}  -  \sqrt{7} }{1}  -  \frac{ \sqrt{7}  -  \sqrt{8} }{1}  -   \frac{ \sqrt{8} -  \sqrt{9}  }{1}  \\  \\  =  =  >  \:  \:  - (1 -  \sqrt{2} ) - ( \sqrt{2}  -  \sqrt{3} ) - ( \sqrt{3}  -  \sqrt{4} ) - ( \sqrt{4}  -  \sqrt{5} ) - ( \sqrt{ 5}  -  \sqrt{6} ) - ( \sqrt{6}  -  \sqrt{7} ) - ( \sqrt{7}  -  \sqrt{8} ) - ( \sqrt{8}  -  \sqrt{9} ) \\  \\  =  =  >  \:  \: -1 +  \sqrt{2}  -  \sqrt{2}  +  \sqrt{3}  -  \sqrt{3}  +  \sqrt{4}  -  \sqrt{4}  +  \sqrt{5}  -  \sqrt{5}  +  \sqrt{6}  -  \sqrt{6}  +  \sqrt{7}  -  \sqrt{7}  +  \sqrt{8}  -  \sqrt{8}  +  \sqrt{9}  -  \sqrt{9}  \\  \\  =  =  > \: \:  -1

Similar questions