Math, asked by vatsalpatni, 9 months ago

Please solve this question​

Attachments:

Answers

Answered by 217him217
1

Step-by-step explanation:

 \frac{x}{a}  =  \frac{y}{b}  =  \frac{z}{c}  = k \\  =  >  \frac{x}{a}  = k  \\  =  > x = ak \\  \frac{y}{b}  = k \\  =  > y = kb \\  =  >  \frac{z}{c}  = k \\  =  > z = kc \\  \\ put \: value \: of \: x \: y \: and \: z \: in \: equation \\  \\   { \frac{ {a}^{2} {x}^{2}  +  {b}^{2} {y}^{2}   +  {c}^{2}  {z}^{2}  }{ {a}^{3} x +  {b}^{3}y +  {c}^{3}z  } }^{ \frac{3}{2} }  \\  { \frac{ {a}^{2} {ka}^{2}  +  {b}^{2} {kb}^{2}  +  {c}^{2} {kc}^{2}   }{  {a}^{3}(ka) +  {b}^{3}(kb) +  {c}^{3}(kc } }^{ \frac{3}{2} }  \\  =  >  { \frac{ {k}^{2}( {a}^{4}  +  {b}^{4}  +  {c}^{4}  }{k( {a}^{4} +  {b}^{4} +  {c}^{4} )} }^{  \frac{3}{2}  }  \\  =  >  { \frac{ {k}^{2} }{k} }^{ \frac{3}{2} }  \\  =  >  { k }^{ \frac{3}{2} }  \\  =  >  { {k}^{ 3 } }^{ \frac{1}{2} }  \\  =  >  {k \times k \times k}^{ \frac{1}{2} }  \\  =  > from \: above \: put \: value \: of \: k \: one \: by \: one \\  =  >  { \frac{x}{a}  \times  \frac{y}{b} \times  \frac{z}{c}  }^{ \frac{1}{2} }  \\  =  >  \sqrt{ \frac{xyz}{abc} }

Similar questions