Math, asked by neelimasinghvi001, 10 months ago

please solve this question... ​

Attachments:

Answers

Answered by Mounikamaddula
7

Answer:

Given:

The equation is,

CosA-SinA+1/CosA+SinA-1=CosecA+CotA

Formula used:

Cosec²A-cot²A=1

-b²=(a+b)(a-b)

Solution:

First Take LHS,

CosA-SinA+1/CosA+SinA-1

Divide each term by 'SinA'.

cosA/sinA-1+1/SinA/cosA/SinA+1-1/sinA

CotA-1+CosecA/cotA+1-cosecA

As we know that,

Cosec²A-cot²A=1

CotA+CosecA-(cosec²A-cot²A)/ CotA-CosecA+1

CotA+CosecA-((CosecA+cotA)(CosecA-cotA))/ cotA-CosecA+1

CotA+CosecA (1-(CosecA-cotA))/cotA-CosecA+1

cotA+CosecA (1-cosecA+cotA)/cotA-CosecA+1

CotA+CosecA

So, LHS=RHS

Answered by TheValkyrie
5

Answer:

\Large{\underline{\underline{\bf{Given:}}}}

\dfrac{cos\:A-sin\:A\:+1}{cos\:A+sin\:A-1} = cosec\:A+cot\:A

\Large{\underline{\underline{\bf{To\:Prove:}}}}

LHS = RHS

\Large{\underline{\underline{\bf{Proof:}}}}

→ Divide throughout by sin A on LHS side

\dfrac{\dfrac{cos\:A}{sin\:A}-\dfrac{sin\:A}{sin\:A}+\dfrac{1}{sin\:A}   }{\dfrac{cos\:A}{sin\:A}+\dfrac{sin\:A}{sin\:A} -\dfrac{1}{sin\:A}  }

\dfrac{cot\:A-1+cosec\:A}{cot\:A+1-cosec\:A}

\dfrac{cot\:A+cosec\:A-(cosec^{2}\:A-cot^{2}\:A)  }{1-cosec\:A+cot\:A}

\dfrac{cot\:A+cosec\:A-(cosec\:A-cot\:A)(cosec\:A+cot\:A)}{1-cosec\:A+cot\:A}

Taking cot A + cosec A common from the numerator

\dfrac{cot\:A+cosec\:A(1-cosec\:A+cot\:A)}{1-cosec\:A+cot\:A}

Cancelling 1 - cosec A + cot A on both numerator and denominator

= cosec\:A+cot\:A = RHS

Hence proved.

\Large{\underline{\underline{\bf{Identities\:used:}}}}

\dfrac{cos\:A}{sin\:A} = cot\:A

\dfrac{1}{sin\:A}=cosec\:A

cosec^{2} \:A-cot^{2}\:A=1

(a^{2} -b^{2} )= (a +b)\times (a-b)

Similar questions