please solve this question...
Attachments:
Answers
Answered by
7
Answer:
Given:
The equation is,
CosA-SinA+1/CosA+SinA-1=CosecA+CotA
Formula used:
→ Cosec²A-cot²A=1
→ a²-b²=(a+b)(a-b)
Solution:
First Take LHS,
→ CosA-SinA+1/CosA+SinA-1
Divide each term by 'SinA'.
→ cosA/sinA-1+1/SinA/cosA/SinA+1-1/sinA
→ CotA-1+CosecA/cotA+1-cosecA
As we know that,
Cosec²A-cot²A=1
→ CotA+CosecA-(cosec²A-cot²A)/ CotA-CosecA+1
→ CotA+CosecA-((CosecA+cotA)(CosecA-cotA))/ cotA-CosecA+1
→ CotA+CosecA (1-(CosecA-cotA))/cotA-CosecA+1
→ cotA+CosecA (1-cosecA+cotA)/cotA-CosecA+1
→ CotA+CosecA
So, LHS=RHS
Answered by
5
Answer:
LHS = RHS
→ Divide throughout by sin A on LHS side
Taking cot A + cosec A common from the numerator
Cancelling 1 - cosec A + cot A on both numerator and denominator
Hence proved.
➳
➳
➳
➳
Similar questions