Physics, asked by VijayaParate, 6 months ago

please solve this question... ​

Attachments:

Answers

Answered by ShivamKashyap08
10

Answer:

  • The Tension (T) in the thread is 0.889 mN

Given:

  1. Mass of bob (M) = 80 milligrams.
  2. Charge (q) = 2 × 10⁻⁸ C.
  3. Electric field (E) = 2 × 10⁴ V/m

Explanation:

\rule{300}{1.5}

Here, as we can see that tension is making some angle i.e. θ with the mean position of pendulum, so we need to take the components of tension over here, i.e. T sinθ and T cosθ. we can also clearly see that sine component of tension balances the coulombic force, and cosine component balances the weight of the bob. So,

\\

\longrightarrow\sf T\sin\theta=F_{c}\quad\dots\dots\sf  (1)\\\\\\\longrightarrow\sf T\cos\theta=W\quad\dots\dots\sf  (2)

  • Dividing equation (1) by equation (2)

\longrightarrow\sf \dfrac{T\sin\theta}{T\cos\theta}=\dfrac{F_{c}}{W}\\\\\\\\\longrightarrow\sf \dfrac{\sin\theta}{\cos\theta}=\dfrac{F_{c}}{W}\\\\\\\\\longrightarrow\sf \tan\theta =\dfrac{F_{c}}{W}\\\\\\\\\longrightarrow\sf \tan\theta =\dfrac{qE}{Mg}

  • Substituting the values, {80 milligrams = 80 × 10⁻⁶ Kg}

\longrightarrow\sf \tan\theta =\dfrac{2\times 10^{-8}\times 2\times 10^{4}}{80\times 10^{-6}\times 10}\\\\\\\\\longrightarrow\sf \tan\theta=\dfrac{4\times 10^{-4}}{800\times 10^{-6}}\\\\\\\\\longrightarrow\sf \tan\theta=\dfrac{4\times 10^{-4}}{8\times 10^{-4}}\\\\\\\\\longrightarrow\sf \tan\theta=\dfrac{4}{8}\\\\\\\\\longrightarrow\sf \tan\theta=\dfrac{1}{2}\\\\\\\\\longrightarrow\sf \theta=\tan^{-1}\Bigg[\dfrac{1}{2}\Bigg]\\\\\\\\\longrightarrow\boxed{\sf \theta\approx 27^{\circ}}

\\

We got the value of inclination of the thread.

\rule{300}{1.5}

\rule{300}{1.5}

Now, substituting the value of theta in equation (1)

\longrightarrow\sf T\sin\theta=F_{c}\quad\dots\dots\sf  (1)\\\\\\\\\longrightarrow\sf T\sin 27^{\circ}=qE=4\times10^{-4}\\\\\\\\\longrightarrow\sf T\times 0.45=4\times10^{-4}\\\\\\\\\longrightarrow\sf T=\dfrac{4\times10^{-4}}{0.45}\\\\\\\\\longrightarrow\sf T=8.89\times10^{-4}\\\\\\\\\longrightarrow\sf T=0.889\times10^{-3}\\\\\\\\\longrightarrow\large{\underline{\boxed{\red{\sf T=0.889\;mN}}}}

\\

The Tension (T) in the thread is 0.889 mN.

\rule{300}{1.5}

Answered by simranraj9650
0

Answer:

0.899 is the correct answer

Explanation:

hopes it helps you

Similar questions