Math, asked by GangsterTeddy, 6 months ago

please solve this question ☺️​

Attachments:

Answers

Answered by anindyaadhikari13
10

Question:-

➡ If  \sf \sqrt{1 -  {x}^{6} }  +  \sqrt{1 -  {y}^{6} }  = a( {x}^{3}  -  {y}^{3} ), prove that,  \sf \frac{dy}{dx}  =  \frac{ {x}^{2} }{ {y}^{2} }  \sqrt{ \frac{1 -  {y}^{6} }{1 -  {x}^{6} } }

Proof:-

➡ This is the required proof. I have also attached images. you can also check it from there.

Given that,

 \sf \sqrt{1 -  {x}^{6} }  +  \sqrt{1 -  {y}^{6} }  = a( {x}^{3}  -  {y}^{3} )

Let us assume that,

 \sf {x}^{3}  =  \cos(p)

and,

 \sf {y}^{3}  =  \cos(q)

So,

 \sf \implies \sqrt{1 -  { \cos }^{2}(p)}  +  \sqrt{1 -  { \cos}^{2}(q) }  = a( \cos(p)  -  \cos(q) )

 \sf \implies \sqrt{ { \sin}^{2}(p)}  +  \sqrt{ { \sin}^{2}(q)}  = a( \cos(p)  -  \cos(q) )

 \sf \implies\sin(p)  + \sin(q)  = a( \cos(p)  -  \cos(q) )

We know that,

 \boxed{  \small\sf \sin(x) +  \sin(y) = 2 \sin \bigg( \frac{x + y}{2}  \bigg) \cos \bigg( \frac{x - y}{2}  \bigg)   }

So,

 \sf \implies 2 \sin( \frac{p + q}{2} ) \cos( \frac{p - q}{2} )  = a( \cos(p)  -  \cos(q) )

Again, we know that,

 \boxed{  \small\sf \cos(x) -  \cos(y) =  - 2 \sin \bigg( \frac{x + y}{2}  \bigg) \sin \bigg( \frac{x - y}{2}  \bigg)   }

So,

 \sf \implies  \cancel{2\sin( \frac{p + q}{2} )} \cos( \frac{p - q}{2} )  =  \cancel{- 2}a  \cancel{\sin( \frac{p + q}{2} )  }\sin( \frac{p - q}{2} )

 \sf \implies \cos( \frac{p - q}{2} )  =  -a \sin( \frac{p - q}{2} )

 \sf \implies \tan( \frac{p - q}{2} )  =  \frac{ - 1}{a}

 \sf \implies  \frac{p - q}{2} =   \tan^{ - 1} \big( \frac{ - 1}{a} \big)

 \sf \implies  p - q=   2\tan^{ - 1} \big( \frac{ - 1}{a} \big)

Now,

 \sf {x}^{3}  =  \cos(p)  \implies p =  { \cos }^{ - 1} ( {x}^{3} )

Also,

 \sf {y}^{3}  =  \cos(q)  \implies q =  { \cos }^{ - 1} ( {y}^{3} )

 \sf \therefore { \cos}^{ - 1} ( {x}^{3} ) -  { \cos}^{ - 1} ( {y}^{3} ) = 2  \ { \tan}^{ - 1}  \big( \frac{ - 1}{a}  \big)

Differentiate...

 \sf \implies \frac{ - 3 {x}^{2} }{ \sqrt{1 -  {x}^{6} } }  -  \frac{ - 3 {y}^{2} }{ \sqrt{1 -  {y}^{6} } }  \frac{dy}{dx}  = 0

 \sf \implies \frac{ - 3 {x}^{2} }{ \sqrt{1 -  {x}^{6} } } +  \frac{  3 {y}^{2} }{ \sqrt{1 -  {y}^{6} } }  \frac{dy}{dx}  = 0

 \sf \implies    \frac{   \cancel{3} {y}^{2} }{ \sqrt{1 -  {y}^{6} } }  \frac{dy}{dx}  = \frac{  \cancel{3} {x}^{2} }{ \sqrt{1 -  {x}^{6} } }

 \sf \implies  \frac{dy}{dx}  =  \frac{ {x}^{2} }{ \sqrt{1 -  {x}^{6} } }  \times  \frac{ \sqrt{1 -  {y}^{6} } }{ {y}^{2} }

 \sf \implies  \frac{dy}{dx}  =  \frac{ {x}^{2} }{ {y}^{2} }  \sqrt{ \frac{1 -  {y}^{6} }{1 -  {x}^{6} } }

Hence, Proved.

Attachments:
Answered by Anonymous
4

Answer:

Hey dear hope it helps uh..!

Step-by-step explanation:

Can you inbox my sis/bro

I'm Also Rajputana..

Here Arghya singh Rajput...I'm girl..

pleaseeee inbox me

Attachments:
Similar questions