please solve this question
Attachments:

anni5580:
ohkk
Answers
Answered by
15
(1)
Method - 1:
x^2/2 + x/4 + 7/8
----------------------------------------
2x + 5) x^3 + 3x^2 + 3x + 1
x^3 + 5x^2/2
-------------------------------------------
x^2/2 + 3x + 1
x^2/2 + 5x/4
--------------------------------------
7x/4 + 1
7x/4 + 35/8
------------------------------------------------
-27/8
Method (2) :
Given Equation is f(x) = x^3 + 3x^2 + 3x + 1 ------- (1)
By the remainder theorem,
5 + 2x = 0
x = -5/2.
Substitute in (1), we get
x^3 + 3x^2 + 3x + 1
(-5/2)^3 + 3(-5/2)^2 + 3(-5/2) + 1
-125/8 + 75/4 - 15/2 + 1

-27/8.
(2)
Given Equation is f(x) = x^3 + 3x^2 + 3x + 1 ------ (1)
By the remainder theorem, We get
x + pi = 0
x = -pi.
Substitute x in (1), we get
f(-pi) = (-pi)^3 + 3(-pi)^2 + 3(-pi) + 1
= -pi^3 + 3pi^2 - 3pi + 1.
This one can also be explained using polynomial division, but u won't understand.
Hope this helps!
Method - 1:
x^2/2 + x/4 + 7/8
----------------------------------------
2x + 5) x^3 + 3x^2 + 3x + 1
x^3 + 5x^2/2
-------------------------------------------
x^2/2 + 3x + 1
x^2/2 + 5x/4
--------------------------------------
7x/4 + 1
7x/4 + 35/8
------------------------------------------------
-27/8
Method (2) :
Given Equation is f(x) = x^3 + 3x^2 + 3x + 1 ------- (1)
By the remainder theorem,
5 + 2x = 0
x = -5/2.
Substitute in (1), we get
x^3 + 3x^2 + 3x + 1
(-5/2)^3 + 3(-5/2)^2 + 3(-5/2) + 1
-125/8 + 75/4 - 15/2 + 1
-27/8.
(2)
Given Equation is f(x) = x^3 + 3x^2 + 3x + 1 ------ (1)
By the remainder theorem, We get
x + pi = 0
x = -pi.
Substitute x in (1), we get
f(-pi) = (-pi)^3 + 3(-pi)^2 + 3(-pi) + 1
= -pi^3 + 3pi^2 - 3pi + 1.
This one can also be explained using polynomial division, but u won't understand.
Hope this helps!
Answered by
9
Hi,
Please see the attached file!
Thanks
Please see the attached file!
Thanks
Attachments:

Similar questions