Math, asked by anganabanerjee999, 4 months ago

Please solve this question ​

Attachments:

Answers

Answered by shadowsabers03
137

Given equation is,

\longrightarrow 100y^2-44x^2=275

\longrightarrow\dfrac{100y^2-44x^2}{275}=1

\longrightarrow\dfrac{y^2}{\left(\dfrac{275}{100}\right)}-\dfrac{x^2}{\left(\dfrac{275}{44}\right)}=1

Now this equation is in the form \dfrac{y^2}{a^2}-\dfrac{x^2}{b^2}= 1.

So it represents a hyperbola with transverse axis along y axis with,

  • a^2=\dfrac{275}{100}
  • b^2=\dfrac{275}{44}

Now,

\longrightarrow c^2=a^2+ b^2

\longrightarrow c^2=\dfrac{275}{100}+\dfrac{275}{44}

\longrightarrow c^2=9

\longrightarrow c=3

Hence the coordinates of the foci are \mathbf{(0,\ \pm3)}.

Answered by mathdude500
4

\large\underline\blue{\bold{Given \:  Question :-  }}

  • What are the coordinates of the foci of

\tt \: {100  \: y}^{2}  - 44 \:  {x}^{2}  = 275

─━─━─━─━─━─━─━─━─━─━─━─━─

Solution:-

\tt \: {100  \: y}^{2}  - 44 \:  {x}^{2}  = 275

☆ Divide both sides be 275, we get

\tt \: \dfrac{100 \:  {y}^{2} }{275}  - \dfrac{44 \:  {x}^{2} }{275}  = 1

\tt \implies \: \dfrac{ {y}^{2} }{\dfrac{275}{100} }  - \dfrac{ {x}^{2} }{\dfrac{275}{44} }  = 1

\tt  \: On \:  comparing  \: with \: \:  \:  \dfrac{ {y}^{2} }{ {b}^{2} }  - \dfrac{ {x}^{2} }{ {a}^{2} }  = 1

\tt \implies \:  \:  {b}^{2}  = \dfrac{275}{100}  \: and \:  {a}^{2}  = \dfrac{275}{44}

\tt \: We  \: know, \:  {c}^{2}  =  {a}^{2}  +  {b}^{2}

\tt \implies \:  {c}^{2}  = \dfrac{275}{100}  + \dfrac{275}{44}

\tt \implies \:  {c}^{2}  =  275 \times \bigg(\dfrac{1}{100}  + \dfrac{1}{44} \bigg)

\tt \implies \:  {c}^{2}  \:  =  \cancel{275} \times  \bigg(\dfrac{44 + 100}{ \cancel{4400} \:  \: ^{16}}  \bigg)

\tt \implies \:  {c}^{2}  = \dfrac{ \cancel{144} \:  \: ^9}{ \cancel{16}}

\tt \implies \:  {c}^{2}  = 9

\tt \implies \: c \:  =  \: 3 \:  \:

\tt \:the \: coordinates \: of \: foci \:  = (0, \pm \: c) = (0, \pm \: 3)

Similar questions