Math, asked by akanksha88221, 1 day ago

please solve this question.​

Attachments:

Answers

Answered by ItzBrainlyLords
3

 \huge \star \:  \underline{ \red{ \sf \: solution : }} \\  \\

Given :

  • Rectangle
  • Angle BOC = 70°
  • Angle ODC

To Find :

  • Angle OAB

Solving :

 \\  \large \tt \mapsto \:  \angle doc + 70 \degree = 180 \degree \\  (linear \:  \: pair) \\  \\  \large \implies \tt \:  \angle doc = 180 \degree - 70 \degree \\  \\  \large \sf \therefore \:  \:  \angle doc = 110 \degree \\

Since, it is a rectangle

  • Triangle DOC = AOB
  • Triangle DOA = COB

_____________________________________________

 \\  \large \leadsto \sf \: in \:  \triangle doc :  \\

  • Angle Sum Property :

 \\  \large \tt  : \implies \:  \angle dco  +  \angle odc +  \angle doc = 180 \degree \\  \\  \large \tt  : \implies \:  \angle dco + 33 \degree + 110 \degree = 180 \degree \\  \\  \large \tt  : \implies  \: \angle dco = 180 \degree - 143 \degree \\  \\   \large \sf\purple{ \therefore \:  \angle dco = 37 \degree} \\

Now,

Angle DCO + Angle BCO = 90°

  • Each angle of rectangle = 90°

 \\  \large \tt \implies \angle bco + 37 \degree = 90 \degree \\  \\  \large \tt \implies \:  \angle bco = 90 \degree - 37 \degree \\  \\  \large \pink{ \therefore \:  \angle bco = 53 \degree} \\

_____________________________________________

 \\  \large \mapsto \sf \: in \:  \:  \triangle abc  :  \\

  • Angle ACB = BCO = 53°
  • Angle ACB = 90°
  • Angle CAB = ?

⊙ Angle Sum Property :

 \\  \large \tt \implies \:  \angle cab + 90  \degree + 53 \degree = 180 \degree \\  \\  \large \tt \implies \angle cab = 180 \degree  - 143 \degree\\  \\  \large \underline{ \boxed{ \green{ \sf \therefore \:  \angle oab = 37 \degree}}} \\

Alternate method :

Angle OCD = Angle OAB

  • (alternate interior angles)

Correct answer Angle OAB = 37°

Similar questions