Math, asked by NITESH761, 2 days ago

please solve this question.​

Attachments:

Answers

Answered by user0888
24

\Huge\text{(A) 7}

\Large\text{\underline{\underline{Explanation}}}

The A.P sum of the numerator has the following properties.

  • First term\large\text{$(a)$}: 5
  • Common difference\large\text{$(d)$}: 4
  • Up to \large\text{$n$} terms

We know that the sum of A.P is -

\text{$\cdots\longrightarrow\boxed{S=\dfrac{n}{2}\{2a+(n-1)d\}.}$}

So, the sum is -

\text{$\cdots\longrightarrow S_{a}=\dfrac{n}{2}\{10+4(n-1)\}$}

\text{$\cdots\longrightarrow S_{a}=n\{5+2(n-1)\}$}

\text{$\cdots\longrightarrow S_{a}=n(2n+3)$}

\large\text{$\therefore S_{a}=n(2n+3).\ \cdots[1]$}

The A.P sum of the denominator has the following properties.

  • First term\large\text{$(a)$}: 7
  • Common difference\large\text{$(d)$}: 2
  • Up to \large\text{$n+1$} terms

We know that the sum of A.P is -

\text{$\cdots\longrightarrow\boxed{S=\dfrac{n}{2}\{2a+(n-1)d\}.}$}

So, the sum is -

\text{$\cdots\longrightarrow S_{a}=\dfrac{n+1}{2}(14+2n)$}

\large\text{$\therefore S_{a}=(n+1)(n+7).\ \cdots[2]$}

As we know from [1] and [2], -

\text{$\cdots\longrightarrow\dfrac{n(2n+3)}{(n+1)(n+7)}=\dfrac{17}{16}.$}

Now, let's solve this.

\text{$\cdots\longrightarrow16(2n+3)=17(n+1)(n+7)$}

\text{$\cdots\longrightarrow32n^{2}+48=17n^{2}+136n+119$}

\text{$\cdots\longrightarrow15n^{2}-88n-119=0$}

\text{$\cdots\longrightarrow(15n+17)(n-7)=0$}

\large\text{$\therefore n=7.$}

So, the correct option is choice (a).

Answered by MysteriesGirl
107

{ \huge{ \boxed{ \bf{\underline{ \red{Answer}}}}}} : -

Option A Is Correct Answer

_____

Hope it's Helpful

Attachments:
Similar questions