Math, asked by apkamanish, 1 year ago

please solve this question...

Attachments:

Answers

Answered by DaIncredible
30

 \frac{ {64}^{ \frac{a}{6} } }{ {4}^{a} }  \times  \frac{ {2}^{2a + 1} }{ {2}^{a - 1} }  \\  \\   =  \frac{ {2}^{6 \times  \frac{a}{6} } }{ {2}^{2 \times a} }  \times  \frac{ {2}^{2a + 1} }{ {2}^{a - 1} }  \\  \\  =  \frac{ {2}^{ a} }{ {2}^{2a} }   \times  \frac{ {2}^{2a + 1} }{ {2}^{a - 1} }  \\  \\ \bf \: using \: the \: identity \\  \bf \:  \frac{ {a}^{m} }{ {a}^{n} } =  {a}^{m - n}   \\  \\  =  {2}^{a - 2a}  \times   {2}^{(2a + 1) - (a - 1)}  \\  \\  =  {2}^{ - a}  \times  {2}^{2a + 1 - a + 1}  \\  \\  =  {2}^{ - a}  \times  {2}^{a + 2}  \\  \\  \bf \: using \: the \: identity \\  \bf \:  {a}^{m}  \times  {a}^{n}  =  {a}^{ m+ n}  \\  \\  =  {2}^{ ( - a) + (a + 2)}  \\  \\   = {2}^{ - a + a + 2}  \\  \\   \bf \: =  {2}^{2} \:  \:   or \:  \: 4

If any doubt, please ask :)

Anonymous: Great answer
Anonymous: nice answer
DaIncredible: Thanks komal and chandan ji :)
Anonymous: Welcome ^_^
Answered by Anonymous
14
\underline{\bold{Solution:-}}

 \frac{ {64}^{ \frac{a}{6} } }{ {4}^{a} } \times \frac{ {2}^{2a + 1} }{ {2}^{a - 1} } \\ \\ = \frac{ {( {2}^{6} )}^{ \frac{a}{6} } }{ {( {2}^{2}) }^{a} } \times \frac{ {2}^{2a + 1} }{ {2}^{a - 1} } \\ \\ = \frac{ {2}^{6 \times \frac{a}{6} } }{ {2}^{2 \times a} } \times \frac{ {2}^{2a + 1} }{ {2}^{a - 1} }

 = \frac{ {2}^{ a } }{ {2}^{2a} } \times \frac{ {2}^{2a + 1} }{ {2}^{a - 1} } \\

• If a number is divided by another number of same base , then there power gets subtracted.

And it's identity is

\boxed{\frac{ { x}^{m} }{ {x}^{n} } = {x}^{m - n}} \\

 = {2}^{a - 2a} \times {2}^{2a + 1 - a + 1} \\ \\ = {2}^{-a} \times {2}^{a + 2}\\

• If two numbers of same base are multiplied ,then there powers are added.

And it's identity is

\boxed{ {x}^{m} \times {x}^{n} = {x}^{m + n}}

 = {2}^{-a + a + 2} \\ \\ = {2}^{2}

\boxed{\bold{= 4}}

⭐ HOPE IT MAY HELP YOU⭐
Similar questions