Math, asked by amankumar98058, 4 months ago

please solve this question. Challenge for all brainly users give right answer with explanation.​

Attachments:

Answers

Answered by Flaunt
210

Question

\sf \large \dfrac{a}{x}  +  \dfrac{y}{b}  = 1 \: and \:  \dfrac{b}{y}  +  \dfrac{z}{c}  = 1

To Find

\sf \large \dfrac{x}{a}  +  \dfrac{c}{z}

\sf\huge\bold{\underline{\underline{{Solution}}}}

Correct option is(b) 1

\sf \longmapsto \dfrac{a}{x}  +  \dfrac{y}{b}  = 1 \: and \:  \dfrac{b}{y}  +  \dfrac{z}{c}  = 1

\sf \longmapsto \dfrac{a}{x}  +  \dfrac{y}{b}  = 1

\sf \longmapsto \dfrac{y}{b}  = 1 -  \dfrac{a}{x}

\sf \longmapsto \dfrac{y}{b}  =  \dfrac{x - a}{x}

If we reciprocal the terms of one side we must have to reciprocal the other side's terms also.

\sf \longmapsto \bold{ \dfrac{b}{y} } =  { \red{\dfrac{x}{x - a} }} -  -  - (1)

\sf \longmapsto \dfrac{b}{y}  +  \dfrac{z}{c}  = 1

\sf \longmapsto \dfrac{z}{c}  = 1 -  \dfrac{b}{y}

\sf  \large\longmapsto \dfrac{z}{c}  = 1 - \bigg ( \dfrac{x}{x - a} \bigg )

\sf \longmapsto \dfrac{z}{c}  =  \dfrac{x - a - x}{x - a}

\sf \longmapsto \dfrac{z}{c}  =  \dfrac{ - a}{x - a}

\sf \longmapsto  \bold{\dfrac{c}{z}  }=  { \red{\dfrac{x - a}{ - a} }} -  -  - (2)

From equation 1 and 2

\sf \longmapsto{\bold{\green{\bigg( \dfrac{x}{a}  +  \dfrac{c}{z} \bigg)}}} =  \dfrac{x}{a}  +  \bigg( \dfrac{x - a}{ - a} \bigg )

\sf \longmapsto \dfrac{x}{a}  + \bigg ( -  \dfrac{x}{a}  +  \dfrac{a}{a}  \bigg)

\sf  =  \dfrac{x}{a}  -  \dfrac{x}{a} + 1 =  \bold{1}

Answered by dezisantosh
176

see the attachment

i hope it will help you

Attachments:
Similar questions