Math, asked by Anonymous, 10 months ago

Please solve this question fast (◍•ᴗ•◍)❤​

Attachments:

Answers

Answered by RvChaudharY50
41

Gɪᴠᴇɴ :-

  • Two vertices of ∆ABC are A(6,4) & B(-2,2) .
  • centroid G = (3,4).

Tᴏ Fɪɴᴅ :-

  • vertices of Third vertex.
  • Area od ∆ABC ?

Fᴏʀᴍᴜʟᴀ ᴜsᴇᴅ :-

  • The centroid of a triangle whose vertices are (x1, y1), (x2, y2) and (x3, y3) has the coordinates (x1+x2+x3)/3, (y1+y2+y3)/3.
  • Area of ∆ vertices A(x1, y1), B(x2, y2) and C(x3, y3) is :- |(1/2) [x1 (y2- y3 )+x2 (y3-y1 )+x3(y1-y2)]|

Sᴏʟᴜᴛɪᴏɴ :-

→ A = (x1,y1) = (6,4)

→ B = (x2,y2) = (-2,2)

→ C = Let (x3,y3)

Than, Putting values in centroid Vertices first, we get,

→ 3 = (x1 + x2 + x3)/3

→ 3*3 = (6 - 2 + x3)

→ 9 = 4 + x3

x3 = 5 .

Similarly,

4 = (y1 + y2 + y3)/3

→ 4*3 = (4 + 2 + x3)

→ 12 = 6 + x3

y3 = 6 .

Hence, vertices of Third vertex C are (5,6) .

____________________

Now, Putting all values in Area we get :-

Area of ∆ABC = |(1/2) [x1 (y2- y3 )+x2 (y3-y1 )+x3(y1-y2)]|

→ Area = (1/2)[6(2-6) + (-2)(6-4) + 5(4-2)]

→ Area = (1/2)[ 6 * (-4) + (-2)*2 + 5*2 ]

→ Area = (1/2)[ (-24) + (-4) + 10 ]

→ Area = (1/2) [ (-28) + 10 ]

→ Area = (1/2) [ (-18) ]

→ Area = | (-9) l

→ Area = 9 unit². (Ans.)

Hence, Area of ABC is 9 unit².

__________________________

Note :- The two vertical bars means we have to use "Absolute Value". Or, it is always positive even if the formula produced a negative result. Polygons can never have a Negative Area.

__________________________

Answered by Anonymous
7

\sf\blue{Question}

\sf{Two \ vertices \ of \ \triangle \ ABC \ are \ A(6,4)}

\sf{and \ B(-2,2). \ If \ the \ Centroid \ is \ G(3,4),}

\sf{find \ the \ third \ vertiex \ of \ the \ triangle}

\sf{and \ also \ find \ area \ of \ \triangle \ ABC}

________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{1. \ The \ third \ vertex \ of \ triangle \ is \ C(5,6).}

\sf{2. \ Area \ of \ \triangle \ ABC \ is \ 9 \ sq \ units}

\sf\orange{Given}

\sf{\implies{Two \ vertices \ of \ \triangle \ ABC \ are}}

\sf{A(6,4) \ and \ B(-2,2).}

\sf{\implies{The \ Centroid \ is \ G(3,4)}}

\sf\pink{To \ find:}

\sf{1. \ Third \ vertex \ of \ triangle.}

\sf{2. \ Area \ of \ \triangle \ ABC}

\sf\green{\underline{\underline{Solution:}}}

\sf{1.}

\sf{Let \ the \ Co-ordinates \ of \ vertex \ C \ be \ (x3,y3)}

\sf{Here, \ x=3, \ y=4, \ x1=6, \ y1=4, \ x2=-2 \ and \ y2=2}

\boxed{\sf{Co-ordinates \ of \ Centroid (x,y)=\frac{x1+x2+x3}{3},\frac{y1+y2+y3}{3}}}

\sf{For \ x \ co-ordinate}

\sf{\therefore{3=\frac{6+(-2)+x3}{3}}}

\sf{9=6-2+x3}

\sf{x3=9-4}

\sf{x3=5}

\sf{For \ y \ co-ordinate}

\sf{4=\frac{4+2+y3}{3}}

\sf{12=6+y3}

\sf{y3=12-6}

\sf{y3=6}

\sf{\therefore{C(x3,y3)=(5,6)}}

\sf\purple{\tt{\therefore{The \ third \ vertex \ of \ triangle \ is \ C(5,6).}}}

\sf{2.}

\sf{Area \ of \ \triangle \ ABC}

\sf{=\frac{1}{2}[x1(y2-y3)+x2(y3-y1)+x3(y1-y2)]}

\sf{=\frac{1}{2}[6(2-6)+(-2)(6-4)+5(4-2)]}

\sf{=\frac{1}{2}[-24-4+10]}

\sf{=\frac{1}{2}[-28+10]}

\sf{=| \ -9 \ |}

\sf{=9 \ sq \ units}

\sf\purple{\tt{\therefore{Area \ of \ \triangle \ ABC \ is \ 9 \ sq \ units}}}

Similar questions