Math, asked by deepesh4079, 9 months ago

please solve this question help me​

Attachments:

Answers

Answered by kumarankit22125
1

Answer:

hope it's help you . ask more questions

Attachments:
Answered by tahseen619
5

Step-by-step explanation:

Given:

a =  \frac{2 +  \sqrt{5} }{2 -  \sqrt{5} }  \\   \\ b \:  =  \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} }

To find:

 {a}^{2}  -  {b}^{2}

Solution:

This is a like fraction So, We don't need not

rationalize it Just Simplify .....

First We should know the value of a + b and a - b

So,

a + b \:   \\  \\  \frac{2 +  \sqrt{5} }{2 -  \sqrt{5} } +  \frac{ 2 -  \sqrt{5} }{2 +  \sqrt{5} }  \\  \\  \frac{( {2 +  \sqrt{5})  }^{2} + (2 -  \sqrt{5}  ) {}^{2} }{( {2}   -    \sqrt{5}  )(2 +  \sqrt{5} )}  \\  \\  \frac{2 \{ \:   {(2)}^{2} +  {( \sqrt{5} )}^{2}  \}}{ {(2)}^{2}   -  {( \sqrt{5} )}^{2} }  \\  \\ \frac{2(4 + 5)}{4 - 5}  \\  \\  \frac{2 \times 9}{ - 1}  \\  \\  - 18

Hence, a + b = - 18

Again,

a  -  b \:   \\  \\  \frac{2 +  \sqrt{5} }{2 -  \sqrt{5} }  -  \frac{ 2 -  \sqrt{5} }{2 +  \sqrt{5} }  \\  \\  \frac{( {2 +  \sqrt{5})  }^{2}  -  (2 -  \sqrt{5}  ) {}^{2} }{( {2}   -    \sqrt{5}  )(2 +  \sqrt{5} )}  \\  \\  \frac{4  .2. \sqrt{5} }{ {(2)}^{2}   -  {( \sqrt{5} )}^{2} } \\  \\  \frac{8 \sqrt{5} }{4 - 5}  \\  \\  \frac{8 \sqrt{5} }{ - 1}  \\  \\  - 8 \sqrt{5}

Hence, a - b = -8√5

Now,

 {a}^{2}  -  {b}^{2}  \\  \\ (a + b)(a - b) \\  \\ ( - 18) \times ( - 8 \sqrt{5} ) \\  \\ 144 \sqrt{5}

The required answer is 144√5.

Using formula

(a+b)² - (a - b)² = 4ab

(a+b)² + (a - b)² = 2(a² + b²)

a² - b² = (a+b)(a - b)

Similar questions