Math, asked by ani13022013, 1 month ago

please solve this question.
if you know.
good morning to all .
I am going off now​

Attachments:

Answers

Answered by kumarsahaaman228
1

Q.No.22

Given,

 {x}^{p}   =  {y}^{q}   =   {z}^{r}

To prove;

To prove:

 \frac{2}{q }  =  \frac{1}{p}  +  \frac{1}{r}

We have,

 \frac{y}{x}  =  \frac{z}{y}  \\  \\         {y}^{2}  = xz \\  \\  ({ {y}^{q} })^{ \frac{2}{q} } =   ({x}^{p}) {}^{ \frac{1}{p} }   . ({z}^{r}) {}^{ \frac{1}{r} }   \\  \\  ({y}^{q}) {}^{ \frac{2}{q} }   =  ({y}^{q}) {}^{ \frac{1}{p} }  .(y {}^{q}) {}^{ \frac{1}{r} }  \\  \\ (y {}^{q}) {}^{ \frac{2}{q} }   = (y {}^{q}) {}^{ \frac{1}{p} +  \frac{1}{r}  }  \\  \\  \frac{2}{q }  =  \frac{1}{p}  +  \frac{1}{r}

Proved.

Similar questions