please solve this question it's urgent.
Attachments:
Answers
Answered by
1
this answer is different
but method is correct by understanding it
U CAN DO THIS ALSO
by using same procedure
but method is correct by understanding it
U CAN DO THIS ALSO
by using same procedure
Attachments:
Anisha143:
lucknow se
Answered by
1
Given f(x) = 4y^4 + 12y^3 + 6y^2 + 50y + 26.
Given g(x) = y^2 + 4y + 2.
Now, Divide (4y^4 + 12y^3 + 6y^2 + 50y + 26) by (y^2 + 4y + 2).
4y^2 - 4y + 14
------------------------------------------------------
y^2+ 4y + 2) 4y^4 + 12y^3 + 6y^2 + 50y + 26
4y^4 + 16y^3 + 8y^2
--------------------------------------------------------
-4y^3 - 2y^2 + 50y + 26
-4y^3 - 16y^2 - 8y
---------------------------------------------------------
14y^2 + 58y + 26
14y^2 + 56y + 28
--------------------------------------------------------------
2y - 2
Therefore 2y - 2 should be subtracted from f(x) so that result is divisible by g(x)
Hope this helps!
Given g(x) = y^2 + 4y + 2.
Now, Divide (4y^4 + 12y^3 + 6y^2 + 50y + 26) by (y^2 + 4y + 2).
4y^2 - 4y + 14
------------------------------------------------------
y^2+ 4y + 2) 4y^4 + 12y^3 + 6y^2 + 50y + 26
4y^4 + 16y^3 + 8y^2
--------------------------------------------------------
-4y^3 - 2y^2 + 50y + 26
-4y^3 - 16y^2 - 8y
---------------------------------------------------------
14y^2 + 58y + 26
14y^2 + 56y + 28
--------------------------------------------------------------
2y - 2
Therefore 2y - 2 should be subtracted from f(x) so that result is divisible by g(x)
Hope this helps!
Similar questions