Math, asked by sanjanac029, 9 months ago

please solve this question of limit​

Attachments:

Answers

Answered by BrainlyPopularman
6

{ \bold{ \green{ \huge{ \underline{ ANSWER } : - }}}} \\  \\ { \bold{ \underline{ Given } : -  }} \\  \\ { \bold{ \blue{ \implies \:   lim_{x -  > 1}(1 - x) \tan( \frac{\pi \: x}{2} )  }}}

{ \bold{ \huge{ \mathfrak{ \red{solution :  - }}}}} \\  \\ { \bold{ { \blue{\implies \:given \:  \: form \:  \: of \:  \: limit \:  \: is \:  \: 0 \times  \infty  \:  \: and }}}}   \\ { \bold{ { \blue{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: its \:  \: called \:  \: undefinded \:  \: form}}}} \\  \\ { \bold{ { \blue{ =  \:  lim_{x -  > 1} (\frac{1 - x}{\cot( \frac{\pi \: x}{2} )}) }}}} \\  \\ { \bold{ { \blue{\implies \: now \:  \: its \:  \:  \frac{0}{0}  \:  \: form \:, \: so \: we \:  \: can \:  \: use \:  \:L'HOSPITAL \:  \: rule - }}}} \\  \\ { \bold{ { \blue{ = \:  lim_{x -  > 1}( \frac{ - 1}{ -  {cosec}^{2}( \frac{\pi \: x}{2} ) \times  \frac{\pi}{2}  } ) }}}} \\  \\ { \bold{ \blue{ =  \frac{1}{ {cosec}^{2}( \frac{\pi}{2} ) \times  \frac{\pi}{2}   } =  \frac{2}{\pi}  }}} \\  \\  \\ { \bold{ { \boxed{ \boxed{ \red{ \huge  \mathbb{ANSWER = \frac{2}{\pi}  }}}}}}}

Answered by Anonymous
0

Answer:

2/π

Step-by-step explanation:

solution is in above attached

Attachments:
Similar questions