Math, asked by Anonymous, 9 months ago

please solve this question ..........please ​

Attachments:

Answers

Answered by pulakmath007
11

\displaystyle\huge\red{\underline{\underline{Solution}}}

DOMAIN

f(x) =  \sqrt{ {x}^{2} - 16 }

Here f (x) is well defined when

 {x}^{2}  - 16  \geqslant 0

 \implies \:  {x}^{2}  \geqslant 16

 \implies \: x \geqslant 4 \:  \:  \: or \:  \:  \: x \leqslant  - 4

So the required Domain of the function is

 =  \{ \: x \in \mathbb{R \:}:  x  \geqslant 4 \:  \: or \:  \: x \leqslant  - 4 \:  \: \}

  = ( -  \infin ,  - 4 \:  ]  \:  \cup \:  \: [ \: 4  \: ,  \infin \: )

RANGE

Let

y =  \sqrt{ {x}^{2}  - 16}

 \implies \:  {y}^{2}  =  {x}^{2}  - 16

 \implies \:  {x}^{2}  =  {y}^{2}  + 16

We know that

for \: any \:  \: x \in \mathbb{R}

 {x}^{2}  \geqslant 0

 \implies \:  { {y}}^{2}   + 16 \geqslant 0

 \implies \:  { {y}}^{2}     \geqslant  - 16

Hence the required Range is

 = \: [ \: 0 \: ,  \infin \: ]

Answered by guptasant72
1

Answer:

To Prove ∑nr=03r×Crn=4n by binomial expansion

(a+b)n=C0nanb0+C1nan−1b1....Cnna0bn=

∑nr=0Crn×an−r×br

if

we compare the two terms

∑nr=03r×Crn=∑nr=0Crn×an−r×br

hence if we make a=1 and b=3

we get ∑nr=0Crn×1n−r×3r

which is same as given term,

∑nr=03r×Crn

putting the same values in (a+b)n=(1+3)n=4n

Similar questions