Math, asked by Anonymous, 9 months ago

please solve this question ..........please <marquee scrollamount=1300>❤ please❤</marquee>​​

Attachments:

Answers

Answered by Anonymous
3

❥____________

As, anything under square root can not be negative,

∴x−2≥0⇒x≥2∴x-2≥0⇒x≥2

So, domain of f(x)f(x) is x∈[2,∞]x∈[2,∞].

( f(x)=1x2−1−−−−−

Answered by pulakmath007
9

\displaystyle\huge\red{\underline{\underline{Solution}}}

 \displaystyle \:  \: f(x) =  \sqrt{ \frac{x  - 2}{3 - x} }

Now f(x) is well defined when

x \geqslant 2 \:  \: and  \:  \: \: 3 - x > 0

Or

x \leqslant 2 \:  \:  \: and \:  \:  \: 3 - x < 0

Now

x \geqslant 2 \:  \: and  \:  \: \: 3 - x > 0 \:  \: gives \: 2 \leqslant x < 3

Again

x \leqslant 2 \:  \:  \: and \:  \:  \: 3 - x < 0 \:  \: gives \:  \: absurd \: result

So the required Domain is

 \{ \:x \in \mathbb{R}\:  :  \: 2 \leqslant x < 3\} = [  \: 2 \: , 3)

Let

 \displaystyle \:  \: </strong><strong>y</strong><strong> </strong><strong>=  \sqrt{ \frac{x  - 2}{3 - x} }

Then

y² = (x-2)/(3-x)

=> 3 - xy²= x - 2

=> x = (3y²+2)/(y²+1)

Which is Positive for all real values of x

So the required Range is the set of all Positive real numbers  \</strong><strong> \mathbb{</strong><strong>R</strong><strong>+</strong><strong>}\:

Similar questions