Math, asked by nikitagarg9, 11 months ago

please solve this question urgent..

Attachments:

Answers

Answered by Anonymous
6

1/(( x^(p-q). +1)

1/( x^p/x^q +1)

1/( x^p + x^q)/x^q

x^q)/ ( x^p + x^q)

x^p /( x^p + x^q). + x^q)/( x^p +x^q)

x^p + x^q)/ ( x^p + x^q)

1


nikitagarg9: could u please solve it in notebook
Anonymous: ohk
nikitagarg9: please solve fast
Answered by pratyush4211
15
 \frac{ {x}^{p} }{ {x}^{p} + {x}^{q} } + \frac{1}{ {x}^{p - q} + 1}

LCM of X^p+X^q and x^p-q+1

=(x^p+x^q)(x^p-q+1)

 \frac{ {x}^{p}( {x}^{p - q} + 1) + 1( {x}^{p} + {x}^{q} ) }{( {x}^{p} + {x}^{q} )( {x}^{p - q} + 1) }

As we know x^p×x^p=x^p+p=x^2p

 \frac{ {x}^{p}( {x}^{p - q} + 1) + 1( {x}^{p} + {x}^{q} ) }{( {x}^{p} + {x}^{q} )( {x}^{p - q} + 1) } \\ \\ \cancel{\frac{ {x}^{2p - q} + {x}^{p} + {x}^{p} + {x}^{q} }{ {x}^{2p - q} + {x}^{p} + {x}^{p} + {x}^{q} }} \\ \\ = 1

Now

Some Steps You might not Understand

 {x}^{p} (x {}^{p - q} ) \\ \\ { x }^{p + p - q} \\ \\ {x}^{2p - q}

Another

 {x}^{q} ( {x}^{p - q} ) \\ \\ {x}^{p - q + q} \\ \\ {x}^{p}

 \huge{Answer = 1}
Similar questions