please solve this questions please
Answers
Question :
Find the value of
Solution :
We have to evaluate:
I=
First Solve :
By long - Division :
We know that
Dividend = Divisor × Quotient+Remainder
Now divide both sides by
Thus ,
=
Now , Apply limits of Integration and Integrate Directly .
I =
I =
I =
Therefore ,
=
Correct option : a)
Answer:
Find the value of
\sf\int\limits_{0}^1 \dfrac{x^4(1-x)^4}{1+x^2}dx
0
∫
1
1+x
2
x
4
(1−x)
4
dx
Solution :
We have to evaluate:
I=\sf\int\limits_{0}^1 \dfrac{x^4(1-x)^4}{1+x^2}dx
0
∫
1
1+x
2
x
4
(1−x)
4
dx
First Solve :
\sf\int\dfrac{x^4(1-x)^4}{1+x^2}dx∫
1+x
2
x
4
(1−x)
4
dx
\implies\sf\int\dfrac{x^4[(1-x)^2]^2}{1+x^2}dx⟹∫
1+x
2
x
4
[(1−x)
2
]
2
dx
\implies\sf\int\dfrac{x^4[1+x^2-2x]^2}{1+x^2}dx⟹∫
1+x
2
x
4
[1+x
2
−2x]
2
dx
\implies\sf\int\dfrac{x^4[1+x^4+4x^2+2x^2-4x^3-4x]}{1+x^2}dx⟹∫
1+x
2
x
4
[1+x
4
+4x
2
+2x
2
−4x
3
−4x]
dx
\implies\sf\int\dfrac{x^4[1+x^4+6x^2-4x^3-4x]}{1+x^2}dx⟹∫
1+x
2
x
4
[1+x
4
+6x
2
−4x
3
−4x]
dx
\implies\sf\int\dfrac{x^8-4x^7+6x^6-4x^5+x^4}{1+x^2}dx⟹∫
1+x
2
x
8
−4x
7
+6x
6
−4x
5
+x
4
dx
By long - Division :
\begin{gathered}\begin{array}{c | c c c c c c c} \cline{2-8} & x^6 & -4x^5 & +5x^4&-4x^2&+4&& \\ \cline{1-8} (x^2 +1) & x^8&-4x^7&+6x^6&-4x^5&+x^4&&\\ & x^8& & +x^6 \\ &(-)&&(-) \\ \cline{2-8} &&-4x^7&+5x^6&-4x^5&+x^4&& \\ &&-4x^7&&-4x^5 \\ &&(+) &&(+)\\ \cline{2-8}&&&+5x^6&&+x^4&& \\ &&&+5x^6&&+5x^4\\ &&&(-)&&(-)\\ \cline{2-8}&&&&&-4x^4&&\\ &&&&&-4x^4&-4x^2\\ &&&&&(+)&(+)\\ \cline{2-8}&&&&&&+4x^2&\\ &&&&&&+4x^2&+4\\&&&&&&(-)&(-)\\ \cline{2-8}&&&&&&&-4\\ \cline{8-8} \end{array}\end{gathered}
\cline2−8
\cline1−8(x
2
+1)
\cline2−8
\cline2−8
\cline2−8
\cline2−8
\cline2−8
\cline8−8
x
6
x
8
x
8
(−)
−4x
5
−4x
7
−4x
7
−4x
7
(+)
+5x
4
+6x
6
+x
6
(−)
+5x
6
+5x
6
+5x
6
(−)
−4x
2
−4x
5
−4x
5
−4x
5
(+)
+4
+x
4
+x
4
+x
4
+5x
4
(−)
−4x
4
−4x
4
(+)
−4x
2
(+)
+4x
2
+4x
2
(−)
+4
(−)
−4
We know that
Dividend = Divisor × Quotient+Remainder
\sf\:x^8-4x^7+6x^6-4x^5+x^4=(1+x^2)\times(x^6-4x^5+5x^4-4x^2+4)+(-4)x
8
−4x
7
+6x
6
−4x
5
+x
4
=(1+x
2
)×(x
6
−4x
5
+5x
4
−4x
2
+4)+(−4)
Now divide both sides by \sf\:1+x^21+x
2
\implies\sf\dfrac{x^8-4x^7+6x^6-4x^5+x^4}{1+x^2}=(x^6-4x^5+5x^4-4x^2+4)-\dfrac{4}{1+x^2}⟹
1+x
2
x
8
−4x
7
+6x
6
−4x
5
+x
4
=(x
6
−4x
5
+5x
4
−4x
2
+4)−
1+x
2
4
Thus ,
\sf\int\dfrac{x^8-4x^7+6x^6-4x^5+x^4}{1+x^2}dx∫
1+x
2
x
8
−4x
7
+6x
6
−4x
5
+x
4
dx =\sf\int(x^6-4x^5+5x^4-4x^2-\dfrac{4}{x^2+1}+4)dx∫(x
6
−4x
5
+5x
4
−4x
2
−
x
2
+1
4
+4)dx
Now , Apply limits of Integration and Integrate Directly .
\sf\int\limits_{0}^1(x^6-4x^5+5x^4-4x^2-\dfrac{4}{x^2+1}+4)dx
0
∫
1
(x
6
−4x
5
+5x
4
−4x
2
−
x
2
+1
4
+4)dx
I=\sf[\frac{1}{7}x^7-\frac{2}{3}x^6+x^5-\frac{4}{3}x^3-4\tan^-1(x)+4x]^1_{0}I=[
7
1
x
7
−
3
2
x
6
+x
5
−
3
4
x
3
−4tan
−
1(x)+4x]
0
1
I =\sf[\frac{1}{7}+5-2-\pi][
7
1
+5−2−π]
I =\sf[\frac{21+1}{7}-\pi][
7
21+1
−π]
I =\sf[\frac{22}{7}-\pi][
7
22
−π]
Therefore ,
\sf\int\limits_{0}^1 \dfrac{x^4(1-x)^4}{1+x^2}dx
0
∫
1
1+x
2
x
4
(1−x)
4
dx =\sf\dfrac{22}{7}-\pi
7
22
−π
Correct option : a