Math, asked by poddarsrisha, 9 months ago

Please solve this step by step with proper reason. DO NOT SPAM.​

Attachments:

Answers

Answered by rishu6845
8

Answer:

B \:  =  \:  \dfrac{\pi}{2}

Step-by-step explanation:

Given ----> Α = π / 6 and b : c = 2 :√3

To find ----->

value \: of \: angle \: b \:

Concept used ---->

1) Cos rule

CosA = ( b² + c² - a² ) / 2 bc

2) Sine rule

a / sinA = b / sinB = c / sinC

Solution---> ATQ,

b :  \: c \:  = 2 :  \:  \sqrt{3}

let \: b \:  =  \: 2k \:  \: and \: c \:  =  \:  \sqrt{3}k

now \\ cosA \:  =  \dfrac{ {b}^{2} \:  +  \:  {c}^{2}  \:  -  \:  {a}^{2}  }{2 \: b \: c}

cos \dfrac{\pi}{6}  \:  =  \dfrac{( \: 2k \: ) ^{2} \:  + ( \:  \sqrt{3 \: k \:} \: ) ^{2}  \:  -  \:  {a}^{2}   }{2 \: ( \: 2k \: ) \: ( \:  \sqrt{3} \: k \: ) }

 =  >  \dfrac{ \sqrt{3} }{2}  \:  =  \:  \dfrac{4 {k}^{2} \:  +  \: 3 {k}^{2} \:  -  \:  {a}^{2}   }{4 \:  \sqrt{3} \:  {k}^{2}  }

 =  > 12 \:  {k}^{2} \:  =  \: 2 \: ( \: 7 {k}^{2}  \:  -  {a}^{2}  \: )

 =  > 6 \:  {k}^{2}  \:  = 7 \:  {k}^{2} \:  -  \:  {a}^{2}

 =  >  {a}^{2} \:  =  \: 7 {k}^{2} \:  -  \: 6 {k}^{2}

 =  >  {a}^{2} \:  =  \:  {k}^{2}

 =  >  \: a \:  =  \: k

now \: by \: sine \: rule \: we \: get \\  \dfrac{a}{sinA}  \:  =  \dfrac{b}{sinB}

 =  >  \dfrac{k}{sin \frac{\pi}{6} }  \:  =  \:  \dfrac{2k}{sinB}

 =  >  \: k \: sinB \:  = \:  2k \: sin \dfrac{\pi}{6}

 =  > k \: cancel \: out \: from \: both \: sides

 =  >  \: sinB \:  =  \:2 sin \dfrac{\pi}{6}

 =  >  \: sinB \:  \:  =  \: 2 \:  \dfrac{1}{2}

 =  >  \: sinB \:  =  \: 1 \\  =  >  \: sinB \:  =  \: sin \frac{\pi}{2 } \\  =  >  \: B \:  =  \:  \frac{\pi}{2}

Similar questions