Math, asked by DiyaShettigar, 3 months ago

please solve this sum ​

Attachments:

Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
40

\large\underline{\underline{\tt\purple{Proof:-}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Given:-

  • \sf \dfrac{tan^3 \theta - 1}{tan \theta - 1} = sec^2 \theta + tan \theta

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution:-

\large\underline{\underline{\bf\blue{L.H.S:-}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf \dfrac{tan^3 \theta - 1}{tan \theta - 1}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

We know,

\pink{\bigstar} \underline{\boxed{\bf\green{a^3 - b^3 = (a-b)(a^2+ab+b^2)}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Applying the above identity we get:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf \dfrac{(tan \theta - 1)(tan^2 \theta + tan \theta \times 1 + 1^2)}{(tan \theta - 1)}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf \dfrac{(tan \theta - 1)(tan^2 \theta + tan \theta + 1)}{(tan \theta - 1)}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Cancelling out the similar terms, we get:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf tan^2 \theta + tan \theta + 1

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

We know,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\pink{\bigstar} \underline{\boxed{\bf\green{tan^2 \theta + 1 = sec^2 \theta}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Hence,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf\red{sec^2 \theta + tan \theta}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\underline{\bf\blue{R.H.S:-}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf\red{sec^2 \theta + tan \theta}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Since,

L.H.S = R.H.S

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

★ HENCE PROVED ★

Answered by Anonymous
6

\huge\mathrm{Answer}

To proof :-

( tan³ θ - 1 ) / ( tan θ - 1 ) = sec² θ + tan θ

Prove :-

L.H.S ,

= tan³θ - 1 / tan³θ - 1

= ( tan θ - 1 )( tan² θ + tan θ + 1 ) / tan θ - 1

= tan² θ + tan θ + 1

= sec² θ + tan θ

= R.H.S ( Proved )

Notes ⭐

★ a³ - b³ = ( a - b )(a² + ab + b² )

★ tan² θ + 1 = sec² θ

L.H.S = Left hand side

R.H.S = Right hand side

Similar questions