Math, asked by adityafrank25, 5 months ago

please solve this trigonometric identity​

Attachments:

Answers

Answered by EthicalElite
38

Question :

 \underline{\bf Prove \: the \: following \: identity :}

  •  \bf \dfrac{sin x + cos x}{sin x - cos x} + \dfrac{sin x - cos x}{sin x + cos x} = \dfrac{2}{1-2cos^{2} x}

Proof :

LHS =  \bf \dfrac{sin x + cos x}{sin x - cos x} + \dfrac{sin x - cos x}{sin x + cos x}

 \sf : \implies \underline{\bf LHS} = \dfrac{(sin x + cos x)(sin x + cos x) + (sin x - cos x)(sin x - cos x)}{(sin x - cos x)(sin x + cos x)}

 \sf : \implies \underline{\bf LHS} = \dfrac{(sin x + cos x)^{2} + (sin x - cos x)^{2}}{(sin x - cos x)(sin x + cos x)}

By using these Algebraic identities :

  • (a + b)² = a² + b² + 2ab

  • (a - b)² = a² + b² - 2ab

  • (a - b)(a + b) = a² - b²

 \sf : \implies \underline{\bf LHS} = \dfrac{(sin^{2} x + cos^{2} x + 2 sin x cos x) + (sin^{2} x + cos^{2} x - 2 sin x cos x)}{sin^{2} x - cos^{2} x}

 \sf : \implies \underline{\bf LHS} = \dfrac{sin^{2} x + cos^{2} x + 2 sin x cos x + sin^{2} x + cos^{2} x - 2 sin x cos x}{sin^{2} x - cos^{2} x}

 \sf : \implies \underline{\bf LHS} = \dfrac{sin^{2} x + cos^{2} x + \cancel{2 sin x cos x} - \cancel{2 sin x cos x} + sin^{2} x + cos^{2} x}{sin^{2} x - cos^{2} x}

 \sf : \implies \underline{\bf LHS} = \dfrac{sin^{2} x + cos^{2} x + sin^{2} x + cos^{2} x}{sin^{2} x - cos^{2} x}

Now, by using these trigonometric identities :

  • sin²θ + cos²θ = 1
  • sin²θ = 1 - cos²θ

 \sf : \implies \underline{\bf LHS} = \dfrac{1 + 1}{(1 - cos^{2} x) - cos^{2} x}

 \sf : \implies \underline{\bf LHS} = \dfrac{2}{1 - cos^{2} x - cos^{2} x}

 \sf : \implies \underline{\bf LHS} = \dfrac{2}{1 - 2cos^{2} x}

RHS =  \bf \dfrac{2}{1-2cos^{2} x}

 \underline{\boxed{\bf As, \: LHS = RHS,}}

 \underline{\boxed{\bf Hence, \: proved.}}

Answered by Sambhavs
13

Answer:

Question :

\underline{\bf Prove \: the \: following \: identity :}

\bf \dfrac{sin x + cos x}{sin x - cos x} + \dfrac{sin x - cos x}{sin x + cos x} = \dfrac{2}{1-2cos^{2} x}

Proof :

LHS = \bf \dfrac{sin x + cos x}{sin x - cos x} + \dfrac{sin x - cos x}{sin x + cos x}

\sf : \implies \underline{\bf LHS} = \dfrac{(sin x + cos x)(sin x + cos x) + (sin x - cos x)(sin x - cos x)}{(sin x - cos x)(sin x + cos x)}

\sf : \implies \underline{\bf LHS} = \dfrac{(sin x + cos x)^{2} + (sin x - cos x)^{2}}{(sin x - cos x)(sin x + cos x)}</p><p>By using these Algebraic identities :</p><p></p><p>(a + b)² = a² + b² + 2ab</p><p>(a - b)² = a² + b² - 2ab</p><p>(a - b)(a + b) = a² - b²</p><p>[tex]\sf : \implies \underline{\bf LHS} = \dfrac{(sin^{2} x + cos^{2} x + 2 sin x cos x) + (sin^{2} x + cos^{2} x - 2 sin x cos x)}{sin^{2} x - cos^{2} x}

\sf : \implies \underline{\bf LHS} = \dfrac{sin^{2} x + cos^{2} x + 2 sin x cos x + sin^{2} x + cos^{2} x - 2 sin x cos x}{sin^{2} x - cos^{2} x}

\sf : \implies \underline{\bf LHS} = \dfrac{sin^{2} x + cos^{2} x + \cancel{2 sin x cos x} - \cancel{2 sin x cos x} + sin^{2} x + cos^{2} x}{sin^{2} x - cos^{2} x}

\sf : \implies \underline{\bf LHS} = \dfrac{sin^{2} x + cos^{2} x + sin^{2} x + cos^{2} x}{sin^{2} x - cos^{2} x}

Now, by using these trigonometric identities :

sin²θ + cos²θ = 1

sin²θ = 1 - cos²θ

\sf : \implies \underline{\bf LHS} = \dfrac{1 + 1}{(1 - cos^{2} x) - cos^{2} x}:

\sf : \implies \underline{\bf LHS} = \dfrac{2}{1 - cos^{2} x - cos^{2} x}:

\sf : \implies \underline{\bf LHS} = \dfrac{2}{1 - 2cos^{2} xx

RHS = \bf \dfrac{2}{1-2cos^{2} x}

\underline{\boxed{\bf As, \: LHS = RHS,}}

\underline{\boxed{\bf Hence, \: proved.}}

Similar questions