Math, asked by palak5354, 1 year ago

please solve this ....urgent...​

Attachments:

Answers

Answered by BrainlyConqueror0901
6

Answer:

\huge{\pink{\green{\sf{AREA_{3}=45.05cm^{2}}}}}

Step-by-step explanation:

\huge{\pink{\green{\underline{\red{\sf{SOLUTION-}}}}}}

• In this question information is given about triangle and we have to find area of shaded region.

• According to this we have to first find Area of big triangle - Area of small triangle=Area of shaede region.

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bold{given} \\   \to \triangle  \bold{ABC }\: is \: triangle  \\ \to  side \: of \: triangle \: are \bold{15cm \: each} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bold{to \: find} \\ \to  area \: of \: shaded \: region = ?

• According to given question :

  \to S=  \frac{a + B+ C}{2}  \\  \to S =  \frac{17 + 15 + 15}{2}  =  \frac{47}{2}  = 23.5\\  \to Area \: of  \:  triangle (ABC)=  \sqrt{S(S - A)(S- B)(S - C)}   \\  \to  Area_{1} =    \sqrt{23.5(23.5 - 17)(23.5 - 15)(23.5 - 15) }  \\  \to Area_{1} =  \sqrt{23.5 \times 6.5 \times 8.5 \times 8.5} \\  \to Area_{1} =  \sqrt{11036.18} \\ \bold{\to Area_{1} = 105.05 {cm}^{2}}  \\ \\  \to Side \: of \: small \: triangle(b) =  ? \\ \therefore small \: triangle \: is \: right \: angled \: triangle  \\ so,\: according \: to \: phythagoras \: theoram \\  \to  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \to {17}^{2}  =  {15}^{2}  +  {b}^{2}  \\  \to 289 - 225 =  {b}^{2}  \\  \to  {b}^{2}  = 64 \\  \to   b =  \sqrt{64}  \\  \to  \bold{b = 8cm} \\  \\ \to  Area \: of \: small \: triangle =  \frac{1}{2}  \times base \times height \\  \to Area_{2} =  \frac{1}{2}  \times 8 \times 15 \\  \to  \bold{Area_{2} = 60 {cm}^{2} }

• So we find both triangle areas.

 \to  Area \: of \: shaded \: region= Area_{1} - area_{2} \\ \to Area_{3} = (105.05 - 60)  {cm}^{2} \\  \bold {\to Area_{3} = 45.05 {cm}^{2}}

Answered by TheEdward
5

Area of shades region = ar(ΔABC - ΔBDC)

Area of triangle ABC = 0.5 x b x h

(find h by Pythagoras)

 \sqrt{ {15}^{2} - ( {8.5})^{2}  }  \\  \sqrt{225 - 72.25  }  \\  \sqrt{152.75 }  \\ 12.36 \: cm

Now,

Area = 0.5 x 17 x 12.36 = 105.06 cm^2

Area of BDC = 0. 5 x b x h

(find b by Pythagoras theorem)

You will get b = 8 cm

Now

Area = 0.5 x 15 x 8 = 60 cm^2

Area of shaded region = 105.06 - 60 =45.06 cm^2

Similar questions