Math, asked by noelemmanuel2006, 8 months ago

Please solve this with all steps. Topic simultaneous equation. ​

Attachments:

Answers

Answered by Anonymous
3

Solution:-

We have

 \rm \:  :  \implies \: mx -  ny \:  =  {m}^{2}  +  {n}^{2}  \:  \:  \:  \:  \:  \:  \: .....(i)

 :  \implies \:  \rm \: x \:  - y \:  = 2n \:  \:  \:  \:  \:  \:  \:  \:  \: ......(ii)

Using substitution method

Take ii eq , we get

:  \implies \:  \rm \: x \:  - y \:  = 2n \:  \:  \:  \:  \:  \:  \:  \:  \:

 \rm :  \implies \: x = 2n + y \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(iii)

Now substitute iii eq on i eq , we get

\rm \:  :  \implies \: mx -  ny \:  =  {m}^{2}  +  {n}^{2}  \:  \:  \:  \:  \:  \:  \:

\rm \:  :  \implies \: m(2n + y) -  ny \:  =  {m}^{2}  +  {n}^{2}  \:  \:  \:  \:  \:  \:  \: .....(i)

 \rm :  \implies2nm \:  + my - ny =  {m}^{2}  +  {n}^{2}

 :  \implies \rm \: y(m - n) =  {m}^{2}  +  {n}^{2}  - 2mn

We can write m² + n² - 2mn as ( m - n )² , we get

 \rm :  \implies \: y(m - n) = (m - n) {}^{2}

 \rm  : \implies  y(m - n) = (m - n)(m - n)

So

 :  \implies \rm \: y =  \dfrac{(m - n)(m - n)}{(m - n)}

:  \implies \rm \: y =  \dfrac{ \cancel{(m - n)}(m - n)}{ \cancel{(m - n)}}

 :  \implies \:  \rm \: y = m - n

Now put the value of y on iii eq

\rm :  \implies \: x = 2n + y

 \rm :  \implies \: x = 2n + (m - n)

 \rm :  \implies \: x = m + n

So value of x = m + n and y = m - n

Similar questions