Math, asked by anushksinghal6, 1 year ago

Please solve with full explaination​

Attachments:

Answers

Answered by MissTanya
6

⭐️ SOLUTION :-

to \: find \:  {x}^{3}  - 3 {b}^{ \frac{2}{3} } x + 9a

Given...

x = (2a +  \sqrt{4 {a}^{2} -  {b}^{2}  } )^{ \frac{1}{3} }  + (2a -  \sqrt{4 {a}^{2}  -  {b}^{2} } ) ^{ \frac{1}{3} }

Now...

 {x}^{3}  =  [(2a +  \sqrt{4 {a}^{2} -  {b}^{2}  } )^{ \frac{1}{3} }  + (2a -  \sqrt{4 {a}^{2}  -  {b}^{2} } ) ^{ \frac{1}{3} } ]^{3}

 {x}^{3}  =  (2a +  \sqrt{4 {a}^{2} -  {b}^{2}  } )^{ \frac{1}{3} \times 3 }  + (2a -  \sqrt{4 {a}^{2}  -  {b}^{2} } ) ^{ \frac{1}{3}  \times 3}  + 3 (2a +  \sqrt{4 {a}^{2} -  {b}^{2}  } )^{ \frac{1}{3} }  (2a -  \sqrt{4 {a}^{2}  -  {b}^{2} } ) ^{ \frac{1}{3} } [(2a +  \sqrt{4 {a}^{2} -  {b}^{2}  } )^{ \frac{1}{3} } +   (2a -  \sqrt{4 {a}^{2}  -  {b}^{2} } ) ^{ \frac{1}{3} }]

 {x}^{3}  =  (2a +  \sqrt{4 {a}^{2} -  {b}^{2}  } )  + (2a -  \sqrt{4 {a}^{2}  -  {b}^{2} } )  + 3 ( {(2a)}^{2} - ( \sqrt{4 {a}^{2}  -  {b}^{2}  } ) ^{2}  )^{ \frac{1}{3} }  \times x

 {x}^{3}  =  2a +  \sqrt{4 {a}^{2} -  {b}^{2}  }  + 2a -  \sqrt{4 {a}^{2}  -  {b}^{2} }  + 3 ( 4{a}^{2} - 4 {a}^{2}   + {b}^{2}  )^{ \frac{1}{3} }  \times x

 {x}^{3}  =  2a  + 2a   + 3 {b}^{ \frac{2}{3} }  x

 {x}^{3}  = 4a + 3 {b}^{ \frac{2}{3} } x

Therefore, putting the values in the equation...

{x}^{3}  - 3 {b}^{ \frac{2}{3} } x + 9a = 4a + 3 {b}^{ \frac{2}{3} } x - 3 {b}^{ \frac{2}{3} } x + 9a

{x}^{3}  - 3 {b}^{ \frac{2}{3} } x + 9a = 4a  + 9a

{x}^{3}  - 3 {b}^{ \frac{2}{3} } x + 9a =13a

So, option (2) 13a is correct ✔️...

HOPE IT HELPS

Similar questions