Math, asked by saryka, 2 months ago

➟ Please solve with proper explaination​

Attachments:

Answers

Answered by mathdude500
105

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\sf \bigg(\dfrac{1}{ \sqrt[3]{x}  +  \sqrt[4]{x} }  + \dfrac{ log(1 +  \sqrt[6]{x} ) }{ \sqrt[3]{x} +  \sqrt{x}  }  \bigg) dx

Let assume that

\rm :\longmapsto\:I \:  =  \: \displaystyle\int\sf \bigg(\dfrac{1}{ \sqrt[3]{x}  +  \sqrt[4]{x} }  + \dfrac{ log(1 +  \sqrt[6]{x} ) }{ \sqrt[3]{x} +  \sqrt{x}  }  \bigg) dx

\rm :\longmapsto\:I \:  = \displaystyle\int\sf \dfrac{1}{ \sqrt[3]{x}  +  \sqrt[4]{x} }dx+ \displaystyle\int\sf \dfrac{ log(1 +  \sqrt[6]{x} ) }{ \sqrt[3]{x} +  \sqrt{x}  } dx

\rm :\longmapsto\:I = I_1 + I_2

where,

\rm :\longmapsto\:I_1 = \displaystyle\int\sf \dfrac{1}{ \sqrt[3]{x}  +  \sqrt[4]{x} }dx

and

\rm :\longmapsto\:I_2 = \displaystyle\int\sf \dfrac{ log(1 +  \sqrt[6]{x} ) }{ \sqrt[3]{x} +  \sqrt{x}  } dx

Consider,

\rm :\longmapsto\:I_1 = \displaystyle\int\sf \dfrac{1}{ \sqrt[3]{x}  +  \sqrt[4]{x} }dx

We use method of Substitution,

 \red{\rm :\longmapsto\:Put \: x =  {y}^{12}}

 \red{\rm :\longmapsto\:dx = 12 {y}^{11} dy}

So, on substituting values we have

\rm :\longmapsto\:I_1 = \displaystyle\int\sf \dfrac{12 {y}^{11} }{ {y}^{4}  +  {y}^{3} }  \: dy

\rm :\longmapsto\:I_1 =12 \displaystyle\int\sf \dfrac{{y}^{11} }{ {y}^{3}(y + 1)}  \: dy

\rm :\longmapsto\:I_1 =12 \displaystyle\int\sf \dfrac{{y}^{8} }{(y + 1)}  \: dy

\rm :\longmapsto\:I_1 =12 \displaystyle\int\sf \dfrac{{y}^{8}  + 1 - 1}{(y + 1)}  \: dy

\rm :\longmapsto\:I_1 =12 \displaystyle\int\sf \dfrac{{y}^{8} - 1}{(y + 1)}  \: dy  + 12\displaystyle\int\sf \dfrac{dy}{y + 1}

 \rm = 12\displaystyle\int\sf ( {y}^{7} -  {y}^{6} +  {y}^{5} -  {y}^{4} +  {y}^{3} -  {y}^{2} + y - 1) + 12 log(y + 1)

 \rm \:  = 12\bigg(\dfrac{ {y}^{8} }{8}  - \dfrac{ {y}^{7} }{7}  + \dfrac{ {y}^{6} }{6}  - \dfrac{ {y}^{5} }{5}  + \dfrac{ {y}^{4} }{4}  - \dfrac{ {y}^{3} }{3}  + \dfrac{ {y}^{2} }{2}  - y\bigg) + 12log(y + 1)

where,

 \red{\rm :\longmapsto\:y =  {\bigg(x \bigg) }^{\dfrac{1}{12} }}

Now,

Consider,

\rm :\longmapsto\:I_2 = \displaystyle\int\sf \dfrac{ log(1 +  \sqrt[6]{x} ) }{ \sqrt[3]{x} +  \sqrt{x}  } dx

 \red{\rm :\longmapsto\:Put \: x =  {y}^{6}}

 \red{\rm :\longmapsto\:dx = 6 {y}^{5} dy}

So, on substituting the values, we have

\rm :\longmapsto\:I_2 = \displaystyle\int\sf \dfrac{ log(1 + y) }{ {y}^{2} +  {y}^{3}}  {6y}^{5}  \: dy

\rm :\longmapsto\:I_2 = \displaystyle\int\sf \dfrac{ log(1 + y) }{ {y}^{2}(1 +  {y})}  {6y}^{5}  \: dy

\rm :\longmapsto\:I_2 =6 \displaystyle\int\sf \dfrac{ log(1 + y) }{(1 +  y)}  {y}^{3}  \: dy

\rm :\longmapsto\:I_2 =6 \displaystyle\int\sf \dfrac{ log(1 + y) }{(1 +  y)}  ({y}^{3} + 1 - 1)  \: dy

\rm :\longmapsto\:I_2 =6 \displaystyle\int\sf \dfrac{ log(1 + y) }{(1 +  y)}  ({y}^{3} + 1)  \: dy - 6 \displaystyle\int\sf \dfrac{ log(1 + y) }{(1 +  y)}dy

 \rm\: =6 \displaystyle\int\sf  log(1 + y)( {y}^{2} - y + 1)\: dy - 6  \frac{ {(y + 1)}^{2} }{2}

\rm :\longmapsto\:I_2=6 I_3 - 3 {[log(y + 1)]}^{2}

Consider,

\rm :\longmapsto\:I_3 = \displaystyle\int\sf  log(1 + y)( {y}^{2} - y + 1)dy

 \red{\rm :\longmapsto\:Put \: 1 + y = t}

 \red{\rm :\longmapsto\:dy \:  =  \: dt}

\rm :\longmapsto\:I_3 = \displaystyle\int\sf logt\bigg( {(t - 1)}^{2}  - t + 1 + 1\bigg) dt

\rm :\longmapsto\:I_3 = \displaystyle\int\sf logt\bigg( {t}^{2} + 1 - 2t  - t + 1 + 1\bigg) dt

\rm :\longmapsto\:I_3 = \displaystyle\int\sf logt\bigg( {t}^{2}  - 3t + 3\bigg) dt

 \rm = logt\displaystyle\int\sf ( {t}^{2} - 3t + 3)dt - \displaystyle\int\sf \bigg(\dfrac{d}{dt}logt\displaystyle\int\sf ( {t}^{2} - 3t + 3)dt\bigg)dt

 \rm = logt\bigg(\dfrac{ {t}^{3} }{3}  - \dfrac{3 {t}^{2} }{2}  + 3t\bigg) - \displaystyle\int\sf \dfrac{1}{t}\bigg(\dfrac{ {t}^{3} }{3}  - \dfrac{3 {t}^{2} }{2}  + 3t\bigg)dt

 \rm = logt\bigg(\dfrac{ {t}^{3} }{3}  - \dfrac{3 {t}^{2} }{2}  + 3t\bigg) - \displaystyle\int\sf \bigg(\dfrac{ {t}^{2} }{3}  - \dfrac{3 {t}^{} }{2}  + 3\bigg)dt

 \rm = logt\bigg(\dfrac{ {t}^{3} }{3}  - \dfrac{3 {t}^{2} }{2}  + 3t\bigg) -  \bigg(\dfrac{ {t}^{3} }{9}  - \dfrac{3 {t}^{2} }{4}  + 3t\bigg)

 \bf \: I_3 =  \rm = logt\bigg(\dfrac{ {t}^{3} }{3}  - \dfrac{3 {t}^{2} }{2}  + 3t\bigg) -  \bigg(\dfrac{ {t}^{3} }{9}  - \dfrac{3 {t}^{2} }{4}  + 3t\bigg)

Therefore,

\rm :\longmapsto\:I_2=6 I_3 - 3 {[log(y + 1)]}^{2}

\rm :\longmapsto\:I_2=6 logt\bigg(\dfrac{ {t}^{3} }{3}  - \dfrac{3 {t}^{2} }{2}  + 3t\bigg) -  6\bigg(\dfrac{ {t}^{3} }{9}  - \dfrac{3 {t}^{2} }{4}  + 3t\bigg) - 3 {[log(y + 1)]}^{2}

where,

 \red{\rm :\longmapsto\:t =  {\bigg(x \bigg) }^{\dfrac{1}{6} } + 1}

So,

\bf :\longmapsto\:I = I_1 + I_2

Similar questions