Math, asked by Rasika4321, 1 year ago

please solve x^2+1/x^2=8, find x^3+1/x^3

Answers

Answered by mathdude500
1

Answer:

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 8 \\ adding \: 2 \: on \: both \: sides \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 8 + 2 \\  {(x +  \frac{1}{x}) = 10 }^{2}  \\ x +  \frac{1}{x}  =  \sqrt{10}  \\ cubing \: both \: sides \\  {(x +  \frac{1}{x}) }^{3}  = 10 \sqrt{10}  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times x \times  \frac{1}{x}  \times x +  \frac{1}{x} ) = 10 \sqrt{10}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times  \sqrt{10}  = 10 \sqrt{10}  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 7 \sqrt{10 }

Similar questions