Math, asked by rajesh142167890, 1 year ago

please tell me my answer​

Attachments:

Answers

Answered by Grimmjow
15

\mathsf{Consider :\;\dfrac{x^2 + x + 2}{x^2 - x^3}}

Taking x common in both Numerator and Denominator, We get :

\mathsf{\implies \dfrac{x\bigg[x + 1 + \dfrac{2}{x}\bigg]}{x(x - x^2)}}

\mathsf{\implies \dfrac{\bigg[\bigg(x + \dfrac{2}{x}\bigg) + 1\bigg]}{x - x^2}}

\mathsf{Given :\;x + \dfrac{2}{x} = 1}

\mathsf{\implies \dfrac{1 + 1}{x - x^2}}

\mathsf{\implies \dfrac{2}{x - x^2}}

\mathsf{Now,\;Consider :\;x + \dfrac{2}{x} = 1}

\mathsf{\implies \dfrac{x^2 + 2}{x} = 1}

\mathsf{\implies x^2 + 2 = x}

\mathsf{\implies x - x^2 = 2}

\mathsf{Substituting\;the\;value\;of\;(x - x^2)\;in\;\dfrac{2}{x - x^2},\;We\;get :}

\mathsf{\implies \dfrac{2}{2} = 1}

\underline{\mathbf{Answer}} : \mathsf{Value\;\;of\;\;\dfrac{x^2 + x + 2}{x^2 - x^3}\;\;is\;\;\boxed{\mathbf{1}}}

Similar questions