Math, asked by jhasakshi77, 10 months ago

Please tell me the answer correctly with explanation​

Attachments:

Answers

Answered by MOSFET01
20

Solution :

 x \: =\: (2\: +\: \sqrt{3})^{\frac{1}{3}}

cube both side

 x^{3} \: =\: (2\: +\: \sqrt{3})^{\frac{3}{3}}

 x^{3} \: =\: 2\: +\: \sqrt{3}... (eq 1)

Now we reciprocal both

\dfrac{1}{x^3}\: =\: \dfrac{1}{2\: +\: \sqrt{3}}

\dfrac{1}{x^3}\: =\: \dfrac{1}{2\: +\: \sqrt{3}}\times \dfrac{2\: - \: \sqrt{3}}{2\: - \: \sqrt{3}}

\dfrac{1}{x^3}\: =\: \dfrac{2\: - \: \sqrt{3}}{(2)^{2}\: - \: (\sqrt{3})^{2}}

\dfrac{1}{x^3}\: =\: \dfrac{2\: - \: \sqrt{3}}{4\: - \: 3}

\dfrac{1}{x^3}\: =\: \dfrac{2\: - \: \sqrt{3}}{1}

\dfrac{1}{x^3}\: =\: 2\: - \: \sqrt{3}.... (eq 2)

Sum equation (1) & (2)

x^3\: +\:\dfrac{1}{x^3}\: =\: 2\: + \: \sqrt{3}\:+\:2\: - \: \sqrt{3}

Answer :

x^3\: +\:\dfrac{1}{x^3}\: =\: 4

Answered by itzcupycake
1

Answer:

  • the correct answer is 4

  • Hope it helps you
Similar questions