Math, asked by srivastavaseem, 2 months ago

Please Tell me the answers fast urgent ​

Attachments:

Answers

Answered by anindyaadhikari13
21

SOLUTION.

Here,

\tt \implies x = \dfrac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}

\tt \implies y = \dfrac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}

Rationalizing x, we get,

\tt \implies x = \dfrac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}} \times  \dfrac{\sqrt{5}+\sqrt{2}}{\sqrt{5}+\sqrt{2}}

\tt \implies x = \dfrac{(\sqrt{5}+\sqrt{2})^{2}}{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})}

\tt \implies x = \dfrac{5+2+2\sqrt{10}}{5-2}

\tt \implies x = \dfrac{7+2\sqrt{10}}{3}

Rationalizing y, we get,

\tt \implies y = \dfrac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}} \times  \dfrac{\sqrt{5}-\sqrt{2}}{\sqrt{5}-\sqrt{2}}

\tt \implies y = \dfrac{(\sqrt{5}-\sqrt{2})^{2}}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})}

\tt \implies y = \dfrac{5+2-2\sqrt{10}}{5-2}

\tt \implies y = \dfrac{7-2\sqrt{10}}{3}

So,

\tt 3x^{2} +4xy - 3y^{3}

\tt= 3x^{2} +4x \times \dfrac{1}{x}- 3y^{3}

\tt= 3x^{2} + 4- 3y^{3}

\tt = 3 \times \bigg(\dfrac{7+2\sqrt{10}}{3}\bigg)^{2} - 3\times \bigg(\dfrac{7-2\sqrt{10}}{3}\bigg)^{3} +4

\tt = \dfrac{3(7+2\sqrt{10})^{2}}{9} - \dfrac{(7-2\sqrt{10})^{3}}{9} + 4

\tt = \dfrac{3(49+40+28\sqrt{10})}{9} - \dfrac{(7)^{3}-(2\sqrt{10})^{3}-3\times7^{2}\times2\sqrt{10}+3\times7\times(2\sqrt{10})^{2}}{9}+4

\tt = \dfrac{3(89+28\sqrt{10})}{9} - \dfrac{1183-374\sqrt{10}}{9} +4

\tt = \dfrac{267+84\sqrt{10}}{9} - \dfrac{1183-374\sqrt{10}}{9}+4

\tt = \dfrac{267+84\sqrt{10}-1183+374\sqrt{10}}{9}  + 4

\tt = \dfrac{458\sqrt{10}-916}{9}  +4

\tt = \dfrac{458\sqrt{10}-916+36}{9}

\tt = \dfrac{458\sqrt{10}-880}{9}

Which is our required answer.

Answered by TYKE
2

Question :

 \sf{If \: x  \small \implies  \frac{ \sqrt{5} +  \sqrt{2}  }{ \sqrt{5}  -  \sqrt{2} } } \: and \: y  \small \:  \implies \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5} +  \sqrt{2}  } \: find  \: 3 {x}^{3}  + 4xy - {3y}^{3}

Solution :

First we will rationalize the denominators.

So we have rationalize the denominator in variable x.

\rightarrow  \sf \: x =  \frac{ \sqrt{5} +  \sqrt{2}  }{ \sqrt{5} -  \sqrt{2}  }

  \rightarrow \sf \: x =  \frac{( \sqrt{5} +  \sqrt{2}  )( \sqrt{5} +  \sqrt{2})  }{ (\sqrt{5} -  \sqrt{2}) ( \sqrt{5} +  \sqrt{2}  ) }

 \sf \:  \rightarrow \: x =  \frac{ {( \sqrt{5} +  \sqrt{2} ) }^{2} }{ {( \sqrt{5}) }^{2}  -  {( \sqrt{2}) }^{2} }

 \sf \:  \rightarrow \: x =  \frac{ {( \sqrt{5}) }^{2} + 2 \cdot \sqrt{5}  \cdot \sqrt{2}  +  {( \sqrt{2}) }^{2}  }{5 - 2}

 \sf \:  \rightarrow \: x =  \frac{5 + 2 \sqrt{10} + 2 }{3}

 \sf \:  \rightarrow \: x =  \frac{7 + 2 \sqrt{10} }{3}

Now, we will rationalize the denominator in variable y.

\sf \:   \rightarrow \:y =   \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5} +  \sqrt{2}  }

  \rightarrow \sf \: y =  \frac{( \sqrt{5}  -   \sqrt{2}  )( \sqrt{5}  -   \sqrt{2})  }{ (\sqrt{5} +  \sqrt{2}) ( \sqrt{5}  - \sqrt{2}  ) }

 \sf \:  \rightarrow \: y =  \frac{ {( \sqrt{5}  -  \sqrt{2} ) }^{2} }{ {( \sqrt{5}) }^{2}  -  {( \sqrt{2}) }^{2} }

 \sf \:  \rightarrow \: x =  \frac{ {( \sqrt{5}) }^{2}  -  2 \cdot \sqrt{5}  \cdot \sqrt{2}  +  {( \sqrt{2}) }^{2}  }{5 - 2}

 \sf \:  \rightarrow \: x =  \frac{5   -  2 \sqrt{10} + 2 }{3}

 \sf \rightarrow y =  \frac{7 - 2 \sqrt{10} }{3}

Now, we have rationalized the denominators and we will put the values in place of variables :-

3x³– 4xy + 3y³

 \sf \:  \rightarrow \: 3 { (\frac{7 + 2 \sqrt{10} }{3}) }^{3} - 4 (\frac{7 + 2 \sqrt{10} }{3})( \frac{7 - 2 \sqrt{10} }{3} )    + 3 { (\frac{7 - 2 \sqrt{10} }{3} )}^{3}

\small \: \sf \:  \rightarrow \:   \frac{3 \times ({7})^{3} + 3 \cdot7 \cdot2 \sqrt{10}(7 + 2 \sqrt{10} ) + 3 \times ({2 \sqrt{10}})^{3}  + 3 \times ( {7})^{3}  -  3 \cdot7 \cdot2 \sqrt{10}(7  -  2 \sqrt{10} )  -  3 \times ({2 \sqrt{10}})^{3} }{27} + 4

  \small \sf \:  \rightarrow   \frac{3 \times 343 + 42 \sqrt{10}(7 + 2 \sqrt{10} ) + 240 \sqrt{10}  + 3 \times 343  - 42 \sqrt{10} (7 - 2 \sqrt{10} ) - 240 \sqrt{10}  }{27} + 4

\small \sf  \rightarrow \:  \frac{1029 + 294 \sqrt{10}  + 840 + 1029 - 294 \sqrt{10} + 840}{27} + 4

 \frac{\small \sf \rightarrow 1029 + 1029 + 840 + 840}{27} + 4

 \sf \:  \rightarrow \frac{2058 + 1680}{27}  + 4

 \frac{3738}{27}  +  \frac{108}{27}

 \frac{3738 + 108}{27}

 \frac{3846}{27}

142.44

Hence the answer is 142.44

Similar questions