Math, asked by cinderella98, 1 year ago

please this question​

Attachments:

Answers

Answered by BrainlyVirat
7

Answer :

x = a cot θ - b cosec θ... (1)

y = a cot θ + b cosec θ... (2)

Adding these equations, we get :

x + y = 2a cot θ

 \tt {\cot  \theta=  \frac{x + y}{2a}} ...(3)

Subtracting (2) from (1),

y - x = 2b cosec θ

So,

 \tt{ \cosec \theta =  \frac{y - x}{2b} ...(4)}

Now,

We know that,

cosec^2 θ - cot^2 θ = 1

Eliminating θ,

 \tt{(\frac{y - x}{2b}) {}^{2}  -  (\frac{x + y}{2a}) {}^{2}  = 1}

Hence, We get :

  \tt{\frac{(y - x) {}^{2} }{4 {b}^{2} }  -  \frac{(x + y) {}^{2} }{4 {a {}^{2} }}^{} }  = 1

or

  \tt{(\frac{y - x{}^{2} }{ {b}^{} })  -  (\frac{(x + y) {}^{2} }{ {a {}^{} }}^{} })  = 4

Hope it helps!

Similar questions