Math, asked by pooja497, 1 year ago

Ples find the a and b the first term is a and the second term is b

Attachments:

Answers

Answered by Cutiepie93
2
Hello friends!!

Here is your answer :

a + b \sqrt{5}  =  \frac{1 + 2 \sqrt{5} }{1 - 2 \sqrt{5} }   +  \frac{1 - 2 \sqrt{5} }{1 + 2 \sqrt{5} }


First we have to rationalise the denominator..

a + b \sqrt{5}  =  \frac{1 + 2 \sqrt{5} }{1 - 2 \sqrt{5} }  \times  \frac{1 +  2 \sqrt{5} }{1 + 2 \sqrt{5} }   +  \frac{1 - 2 \sqrt{5} }{1 + 2 \sqrt{5} }  \times  \frac{1 - 2 \sqrt{5} }{1 - 2 \sqrt{5} }


a + b \sqrt{5}  =  \frac{(1 + 2 \sqrt{5}) (1 + 2 \sqrt{5}) }{(1 - 2 \sqrt{5})(1 + 2 \sqrt{5} ) }   +  \frac{(1 - 2 \sqrt{5})(1 - 2  \sqrt{5} )}{(1 + 2 \sqrt{5} )(1 - 2 \sqrt{5)} }



Using identity :

( a + b)² = a² + b² + 2ab

( a + b) ( a - b) = a² - b²


a + b \sqrt{5}  =  \frac{ {(1)}^{2}  +  {(2 \sqrt{5}) }^{2}   + 2(1)(2 \sqrt{5}) }{ {(1)}^{2}  -  {(2 \sqrt{5} )}^{2}  }   +  \frac{ {(1)}^{2}  +  {(2 \sqrt{5} )}^{2}  - 2(1)(2 \sqrt{5})  }{  {(1)}^{2}  -  {(2 \sqrt{5} )}^{2} }



a + b \sqrt{5}  =  \frac{1 + 20+ 4 \sqrt{5}  }{1 - 20}  +  \frac{1 + 20 - 4 \sqrt{5} }{1 - 20}



a + b \sqrt{5}  =  \frac{21 + 4 \sqrt{5} }{ - 19}   +  \frac{21  - 4 \sqrt{5} }{ - 19}



a  + b \sqrt{5}  =  \frac{21  + 4 \sqrt{5} + 21 - 4 \sqrt{5}  }{ - 19}



a + b \sqrt{5}  =  \frac{21 + 21}{ - 19}


a + b \sqrt{5}  =  \frac{ - 42}{19}



Comparing it, We get the value of a and b.



a =  \frac{ - 42}{19}


b = 0



Hope it helps you..

pooja497: Thx
pooja497: For answering my question
Cutiepie93: wlcm
Similar questions