Math, asked by farhanafarhana85933, 1 month ago

plot the following plots on the graph and identify the type of figure, A) (-2,4); B) (2,0) C) (-6,0) D) (-2,-4)

Answers

Answered by GraceS
4

\sf\huge\bold{Answer:}

\fbox{\rm Square}

Given :

Figure ACDB

Points :

A (-2,4)

B(2,0)

C(-6,0)

D (-2,-4)

To find :

Figure formed by plotting points on graph

Solution :

Figure is in attachment.

  • Distance formula :

\tt \boxed{\bf d =  \sqrt{(x_2 - x_1) {}^{2} + (y_2 -y_1  ) {}^{2}  }}

where,

\tt x_2 = x coordinate of 2nd point.

\tt x_1 = x coordinate of 1st point.

\tt y_2 = y coordinate of 2nd point.

\tt y_1 = y coordinate of 1st point.

  • To find AC

→A(-2,4)

→C(-6,0)

\tt AC =  \sqrt{(-6 - (-2)) {}^{2} + (0 -4  ) {}^{2}  }

\tt AC =  \sqrt{(-6+2) {}^{2} + ( -4  ) {}^{2}  }

\tt AC =  \sqrt{(-4) {}^{2} + (-4  ) {}^{2}  }

\tt AC =  \sqrt{(16+ 16  }

\tt AC =  \sqrt{32  }

\tt\red{ AC =  4\sqrt{ 2 }\:units}

  • To find CD

→C(-6,0)

→D(-2,-4)

\tt CD =  \sqrt{(-2-( - 6) ) {}^{2} + (-4-0 ) {}^{2}  }

\tt CD =  \sqrt{(-2+6) {}^{2} + (-4 ) {}^{2}  }

\tt CD =  \sqrt{(4) {}^{2} + (-4 ) {}^{2}  }

\tt CD =  \sqrt{16+ 16  }

\tt CD =  \sqrt{32 }

\tt \red{CD =  4\sqrt{2  }\:units}

  • To find BD

→B(2,0)

→D(-2,-4)

\tt BD =  \sqrt{(-2 - 2 ) {}^{2} + (-4 -0  ) {}^{2}  }

\tt BD =  \sqrt{(-4 ) {}^{2} + (-4  ) {}^{2}  }

\tt BD =  \sqrt{16 + 16   }

\tt BD =  \sqrt{32 }

\tt\red{ BD = 4\sqrt{2} {\:units }}

  • To find AB

→A(-2,4)

→B(2,0)

\tt AB =  \sqrt{(2 - (-2)) {}^{2} + (0 -4  ) {}^{2}  }

\tt AB =  \sqrt{(2 +2) {}^{2} + ( -4  ) {}^{2}  }

\tt AB =  \sqrt{(4) {}^{2} + (-4  ) {}^{2}  }

\tt AB =  \sqrt{(16+ 16  }

\tt AB =  \sqrt{32  }

\tt\red{ AB =  4\sqrt{ 2 }\:units}

Hence, it can be seen that all sides of figure are equal.

Now, let us see whether diagonals are equal or not.

  • To find BC

→B(2,0)

→C(-6,0)

\tt BC =  \sqrt{(-6 - 2 ) {}^{2} + (0 -0  ) {}^{2}  }

\tt BC =  \sqrt{(-8 ) {}^{2} + (0  ) {}^{2}  }

\tt BC =  \sqrt{64 + 0    }

\tt BC =  \sqrt{64 }

\tt\red{ BC =  {8\:units }}

  • To find DA

→D(-2,-4)

→A(-2,4)

\tt DA =  \sqrt{(-2-( - 2) ) {}^{2} + (4-(-4) ) {}^{2}  }

\tt DA =  \sqrt{(-2+ 2 ) {}^{2} + (4+4 ) {}^{2}  }

\tt DA =  \sqrt{(0) {}^{2} + (8 ) {}^{2}  }

\tt DA =  \sqrt{0 + 64  }

\tt\red{ DA =  8\:units}

Diagonals are also equal.

Hence, a figure having all four sides and 2 of it's diagonal equal is a square.

The figure formed is a square.

Attachments:
Similar questions
Math, 17 days ago