Plot the points (0,0), (4,0),(4,3) and (0,3) and show that they form a rectangle.
Answers
____________________________‼️
____________________________‼️
Step-by-step explanation:
\huge\mathfrak{Hola\: Mate}HolaMate
\huge{Solution:-}Solution:−
refer \: the \: figure \: shown \: in \: image,referthefigureshowninimage,
\begin{lgathered}let \: the \: vertices \: of \: quadriateral \: \: be = \\ a(0 \:, \: 3) \\ b(4 \: , \: 3) \\ c(0 \: , \: 0) \\ d(4 \: , \: 0)\end{lgathered}
lettheverticesofquadriateralbe=
a(0,3)
b(4,3)
c(0,0)
d(4,0)
distance \: formula = \sqrt{ {(x - x1)}^{2} + {(y - y1)}^{2} }distanceformula=
(x−x1)
2
+(y−y1)
2
\begin{lgathered}in \: rectangle \: opposite \: sides \: are \: equal \\ therefore \: , \: ab = cd\end{lgathered}
inrectangleoppositesidesareequal
therefore,ab=cd
\begin{lgathered}by \: using \: distance \: formula = \\ \sqrt{( {0 - 4)}^{2} + {(3 - 3)}^{2} } = \sqrt{ {(0 - 4)}^{2} + {(0 - 0)}^{2} }\end{lgathered}
byusingdistanceformula=
(0−4)
2
+(3−3)
2
=
(0−4)
2
+(0−0)
2
\sqrt{ { (- 4)}^{2} } = \sqrt{( {4)}^{2} }
(−4)
2
=
(4)
2
\sqrt{16} = \sqrt{16}
16
=
16
4 = 44=4
similarly \: , \: ac = bdsimilarly,ac=bd
hence \: is \: is \: poved \: that \: quadrilateral \: is \: rectangle \: beacause \: its \: opposide \: sides \: are \: equalhenceisispovedthatquadrilateralisrectanglebeacauseitsopposidesidesareequal
____________________________‼️
____________________________‼️